FOSS Science Stories for Grades 1–2 Are Here

In 2000 we developed the FOSS Science Stories for the 16 modules for grades 3–6. They were greeted enthusiastically. But the FOSS teachers in grades 1–2 had a question. When were we going to develop reading material to accompany the modules they were teaching? We promised these primary FOSS teachers that Science Stories for grades 1–2 would be our next project, and now they are complete.

The FOSS Science Stories for grades 1–2 are published as both big books and student books. They are available in English and Spanish. You’ll find large, colorful, instructive photographs. The text relates directly to the images, calling students’ attention to particular details, suggesting comparisons, and challenging students to think critically about the images. Most of the stories are expository, adding detail and extension to the knowledge gained from the direct experience of the FOSS investigations. There are a few examples of technical readings.
Science Stories continued

in which students follow instructions to conduct a new investigation.

A FOSS Science Stories folio has been designed to help teachers relate the stories to the investigations. This folio will become part of the revised Teacher Guide to be released in summer 2001. At that same time, one big book and eight student books will be included in every FOSS module for grades 1–2. But even before the revised kits are released, you can purchase and use FOSS Science Stories with your current editions of the modules. See the article “FOSS Science Stories: Building Literacy Through Science” on page 4 of this newsletter for additional reading.

Eau Claire District Develops FOSS Supply-Ordering System on the Web
By Linda Stelter and Susan Savolainen
Eau Claire Area School District, Eau Claire, Wisconsin

How can 125 FOSS consumable supply items in classroom quantities for 15 elementary schools be stocked, inventoried, organized, ordered by teachers, and delivered efficiently? This is the planning question that we tried to answer when designing a support system that would become an important key to the district’s FOSS success story.

We added a 10 X 90-foot area to the district instructional media center (IMC) to house FOSS supplies and lined the walls with sturdy metal shelving. The support staff arranged the supplies alphabetically in covered, plastic storage bins large enough to store a year’s supply of each item. Each bin was labeled with the item, grade and module, and reorder number. (Slides of the inventory and storage procedure may be viewed at http://www.ecasd.k12.wi.us/departments/media/foss/foss.ppt.)

Teachers can easily order consumable supplies using forms on the district Web site. For each module, there is a form on which teachers enter their name, school, and grade and the quantity of each item needed. (Web forms can be viewed at http://www.ecasd.k12.wi.us/departments/media/foss/index.html.) Immediately after clicking the “submit” button, the teacher receives a confirmation of the order, which is then e-mailed to three members of the Media Services support staff. The first person tracks inventory with an Excel spreadsheet. The second person pulls the order from the IMC for delivery. Our district provides daily delivery to all schools, so teachers can expect their deliveries within two days. The third person provides backup to the first two.

We operate on a Windows NT network and used Microsoft FrontPage 2000 software for developing our Web pages. In order for the Web forms to function properly, a skilled Web master performed some setup on the server. Running Microsoft FrontPage 2000 by Jim Buyens (ISBN 157231947X) was helpful in developing our Web forms.

The project required teamwork by many individuals to build the support structure necessary for a successful implementation of FOSS in our district. “FOSS” has taken on a new meaning for us: Fabulously Organized Support Staff!

For more information about the Eau Claire Web-ordering system, contact Linda or Susan at:

Eau Claire Area School District
500 Main St.
Eau Claire, WI 54701

Linda Stelter, District Media Coordinator
e-mail: lstelter@ecasd.k12.wi.us
(715) 833-3451

Susan Savolainen,
Gifted Education/6-8 Curriculum Coordinator
e-mail: ssavolainen@ecasd.k12.wi.us
(715) 833-3456

A 10 X 90-FOOT ADDITION WAS ADDED TO THE DISTRICT IMC FOR THE FOSS SUPPLIES. THE NEW SPACE WAS LINED WITH STURDY METAL SHELVING, 24 INCHES DEEP.

VARIOUS SIZES OF COVERED, CLEAR-PLASTIC TUBS WERE PURCHASED FOR EACH SUPPLY ITEM. EACH TUB IS LABELED WITH THE ITEM NAME, MODULES, AND FOSS REORDER NUMBER.
Dear Class 4B,

Thanks so much for sending us your letter and taking the time to be so thoughtful about the assessment questions you answered at the end of the FOSS Ideas and Inventions Module. We very much appreciate your feedback.

We count on feedback from students and teachers who are using the program to help us continue to make it an effective one.

To tell you the truth, we struggled a bit with this question when we were developing it, and so I’d like to share our thinking with you. We started out by using the word “usually,” but then we discovered that you could say that inventions usually are useful, inventions usually help you do something faster or better (or at least that seems to be what makes them a viable invention), and, of course, inventions usually start with an idea. That would have meant that there were three correct answers! I think we can all agree that D would not be the right answer no matter which word is used.

You make a good point about inventions that were accidents. In developing the question, we were thinking that, even if an invention was an accident, each inventor started out with an idea to create something new or solve a problem. But as you pointed out so well, the accidents that turned into valuable inventions were not the result of a direct idea. So, perhaps you are right that ALWAYS, especially in capital letters, is too strong.

Designing good assessments is a difficult task. Assessment questions are made up by groups of people who do their best to make the questions clear and correct, but since every person can interpret the meaning of words in a slightly different way, there are bound to be times when the questions could have been stated better. After receiving your letter and hearing about the thoughtful discussions you have had based on the assessment, I am even more convinced about the importance of assessment being an integral part of the learning process. Testing students to give them a grade is a far less noble purpose for assessment than stimulating thinking among those who are taking it!

We also appreciate you sending us the books that you were using (see this issue’s New from the Wordsmiths column on pages 8–9 for information about the two books, The Kid Who Invented the Popsicle and Accidents May Happen) and have added them to the resource list on the FOSS website (http://www.lhs.berkeley.edu/foss). Again, we really depend on folks in the field to help us look for new resources that support the modules.

Thanks again for sending us your letter and your comments. If you find any more assessment questions that you think are unclear, we’d love to hear from you again. Our goal is to make the assessments as valid and reliable as possible, and your comments help us reach that goal. We keep a file of all such letters and comments and consider them carefully whenever we have the chance to revise the program. We greatly appreciate your efforts!

Sincerely,

Kathy Long
FOSS Assessment Coordinator

Student-Talk:
Assessing An Assessment

Dear FOSS Company:

We have just finished studying the Ideas and Inventions Module. We have also just finished reading two books, The Kid Who Invented the Popsicle by Don Wulffson and Accidents May Happen by Charlotte Foltz Jones. As the title of the second book demonstrates, many inventions occur as the result of an accident.

We disagree with the wording of question number four on the end-of-module assessment: Which of these is ALWAYS true about inventions? We disagree with the word ALWAYS, especially in capital letters. For example, we agree that although the process of vulcanization came from the idea of improving rubber, the actual invention came from an accident, not a direct idea to invent this type of rubber. (FOSS Science Stories: Ideas Inventions, page 3)

In Accidents May Happen, pages 2–3, Corn Flakes® and Wheaties® also came to be because of accidents. Yes, Dr. John Kellogg and his brother Will had ideas about inventing foods from grains, but Corn Flakes® were the result of an accident, not a specific idea. Wheaties® has an accidental story, too.

We simply think ALWAYS is too strong an emphasis to describe how inventions come from ideas. Perhaps “usually” would be a better word. Rarely is anything ALWAYS or NEVER.

Thank you for consideration of our letter.

Sincerely,

Judy Wachholz
Class 4B, St. John Lutheran School

The FOSS Response:

Here’s the question about which these students were concerned.

4. Which of these is ALWAYS true about inventions?
 A. Inventions always are useful.
 B. Inventions always start with an idea.
 C. Inventions always help you do something faster or better.
 D. Inventions always turn into an idea.

Dear 4B,

Thanks so much for sending us your letter and taking the time to be so thoughtful about the assessment questions you answered at the end of the FOSS Ideas and Inventions Module. We very much appreciate your feedback.

We count on feedback from students and teachers who are using the program to help us continue to make it an effective one.

To tell you the truth, we struggled a bit with this question when we were developing it, and so I’d like to share our thinking with you. We started out by using the word “usually,” but then we discovered that you could say that inventions usually are useful, inventions usually help you do something faster or better (or at least that seems to be what makes them a viable invention), and, of course, inventions usually start with an idea. That would have meant that there were three correct answers! I think we can all agree that D would not be the right answer no matter which word is used.

You make a good point about inventions that were accidents. In developing the question, we were thinking that, even if an invention was an accident, each inventor started out with an idea to create something new or solve a problem. But as you pointed out so well, the accidents that turned into valuable inventions were not the result of a direct idea. So, perhaps you are right that ALWAYS, especially in capital letters, is too strong.

Designing good assessments is a difficult task. Assessment questions are made up by groups of people who do their best to make the questions clear and correct, but since every person can interpret the meaning of words in a slightly different way, there are bound to be times when the questions could have been stated better. After receiving your letter and hearing about the thoughtful discussions you have had based on the assessment, I am even more convinced about the importance of assessment being an integral part of the learning process. Testing students to give them a grade is a far less noble purpose for assessment than stimulating thinking among those who are taking it!

We also appreciate you sending us the books that you were using (see this issue’s New from the Wordsmiths column on pages 8–9 for information about the two books, The Kid Who Invented the Popsicle and Accidents May Happen) and have added them to the resource list on the FOSS website (http://www.lhs.berkeley.edu/foss). Again, we really depend on folks in the field to help us look for new resources that support the modules.

Thanks again for sending us your letter and your comments. If you find any more assessment questions that you think are unclear, we’d love to hear from you again. Our goal is to make the assessments as valid and reliable as possible, and your comments help us reach that goal. We keep a file of all such letters and comments and consider them carefully whenever we have the chance to revise the program. We greatly appreciate your efforts!

Sincerely,

Kathy Long
FOSS Assessment Coordinator
Earlly literacy development focuses on “cracking the code” of written language. Students learn how to decode words, automatically recognize “sight words,” use a variety of strategies for comprehension, and practice reading aloud to develop fluency. Students also learn the written conventions of language, coordinate visual motor skills, and organize thoughts into meaningful sentences. Learning to read and write is a daunting task indeed!

This monumental effort, however, serves an even greater purpose. As students develop their literacy skills, the objective of literacy development transfers from learning to read and write to reading and writing to learn. People use oral and written language to articulate thought, solve problems, and gather information. Literacy development is an essential component of cognitive development.

Typically, students are exposed to a variety of stories in the quest for literacy. Picture books, basal readers or anthologies, and controlled vocabulary stories are often included in a teacher’s literacy program. While reading instruction begins with narrative texts, it does not end there. From the third or fourth grade, the bulk of reading practice that students get occurs with “content-area” reading materials. From third grade through twelfth, a student is expected to read at least 30,000 pages from science, math, and social studies textbooks. (May, 1986, p. 375)

Often, both teachers and parents assume that, once children master the basic skills of reading, they should be able to read anything, including content-area textbooks. However, each type of reading material, including every content area, has its own characteristics that must be learned. Each content area has its own vocabulary, sentence structure, required reading speed, and assumptions about what experience the reader has already had. Students must develop literacy skills for each content area to meet the different challenges presented by content-area literature.

Preparing students to tackle content-area materials needs to begin in the primary grades. Students can learn to crack the written code of a variety of genres, including both narrative and expository texts, while also learning content. It is important to remember that students who are studying a subject area such as science are also studying language. “Biology is not plants and animals. It is language about plants and animals. History is not events. It is language describing and interpreting events. Astronomy is not
model valuable strategies fundamental to both science and reading and ask students to actively think about what they have read.

Questioning strategies are further modeled by the open-ended discussion questions suggested in the teacher’s folio. These questions are used to deepen students’ understanding of the scientific ideas and also to encourage students to actively process the information presented in the text. Often these questions ask students to refer back to the text to support an answer, to explain one of the photos, or to clarify a statement made by the author.

Extension activities are suggested after students have read and discussed the article. The extension activities ask students to further develop their ideas by synthesizing, analyzing, or evaluating information presented in the article and provide another opportunity for students to process content information while working with the structure of expository text.

For example, in the FOSS New Plants Module for grades 1–2, students begin their investigation of plants by growing brassica plants. Brassica grow quickly and allow students to observe the entire growth and reproduction cycle of a plant within a relatively short time.

Students learn what plants need to survive and how the plants’ structures accommodate those needs.

The accompanying article in FOSS Science Stories New Plants, “What Do Plants Need?” expands on students’ knowledge and asks students to apply their understanding of plants’ needs to the plants described in the article. Before reading the article, the table of contents is introduced and discussed with the class. Because a table of contents is a tool often found in content-area texts, a quick discussion of how to use a table of contents is vital to students’ content-area literacy.

Next, an introductory activity is suggested to set a purpose for reading and to activate or introduce content vocabulary. Students are asked to brainstorm ideas that might answer the question, “What do plants need?” and then read the story to find out. After reading the story, students are asked why do plants need water, nutrients, sunlight, and space? What information from the text tells you why? They learn to scan the article to find the needed information.

As an extension, students are asked to compare and contrast plants’ needs with humans’ needs. Students learn to use a graphic organizer, a Venn diagram, applying what they have learned about plants in a new context and using the article as a resource for their assignment. Another activity introduces, encourages discussion about, and models how to use the glossary—another tool often found in content-area texts. Content vocabulary introduced in the FOSS module continues to be used throughout each story and in the extension activities provided in the teacher’s folio.

Schools are expected to impart a common body of information and also to teach students how to acquire information on their own. Content-area literacy has two aims—to teach students about the world and to teach students how to learn about the world on their own. FOSS Science Stories provide primary teachers with a tool for developing content-area literacy in science. The articles are written in an

Continued on page 6
Building Literacy continued

engaging, expository format utilizing content vocabulary already familiar to students through their work in the FOSS module. The text and photos encourage students to actively interact with the story and develop questioning strategies fundamental to both literature and science. Finally, FOSS Science Stories ask students to analyze, synthesize, and evaluate information presented in the text and to further develop their scientific knowledge by applying their understanding to different settings.

References

Two Summer Workshops for FOSS Middle School Courses

Human Brain and Senses, July 8–13, 2001

It has been suggested that this is the century of the brain. In the next hundred years science will understand and recreate the complex organic communication system known as the central nervous system. Some of the researchers who will be working on the front lines of this exciting field are in your classrooms right now.

Join us, the Full Option Science System curriculum developers, for a week-long, in-depth introduction to the FOSS Human Brain and Senses course for middle school. You will have ample time to become familiar with all of the resources for teaching this fascinating subject matter: the equipment kit, the Teacher Guide, the student resources book (images, data, and readings), the student lab notebook, and the multimedia program.

During the training sessions we will discuss the program philosophy, teaching strategies, correlation with national standards, learning needs of middle-level students, and assessment. People who complete the training will be fully prepared to teach the course effectively and to act as workshop leaders themselves.

This special workshop is hosted by the Center for the Enhancement of Science and Mathematics Education (CESAME) at Northeastern University in Boston, in partnership with the Center for Subsurface Sensing and Imaging Systems (CenSSIS), an NSF-funded Engineering Research Center. Special extras for workshop participants will be presentations by researchers in the field of subsurface imaging and field trips to sites where state-of-the-art medical imaging is done. We will explore ways to link the FOSS Human Brain and Senses school experience with national and local imaging centers to enrich the curriculum and build bridges of understanding between formal classroom studies and the outside world.

Presenters:
Dr. Susan Brady, Lead Developer
Linda De Lucchi, FOSS Codirector
Larry Malone, FOSS Codirector

Planetary Science, August 12–17, 2001

Earth is a planet—a distinct, isolated, rocky sphere circling a modest star in the company of eight other planets. Additionally, Earth is graced with a single, massive satellite, the Moon. This is the field of study for one of the most active frontiers in science, the exploration and understanding of our planetary system. And what better place to launch our mission into the study of planetary science than at the Lunar and Planetary Institute in Houston.

FOSS is collaborating with LPI to offer a week-long workshop featuring the Planetary Science course for middle school. The work with the curriculum materials will be enriched by LPI staff presentations, field trips to NASA sites, and a universe of resources for the study of planetary science. The workshop promises to provide participants with information about up-to-the-minute discoveries, as well as strategies for engaging middle-schoolers in meaningful experiences.

Presenters:
Linda De Lucchi, FOSS Codirector
Larry Malone, FOSS Codirector

For more information, such as time, costs, and accommodations, send your mailing address to Larry Malone at lmalone@uclink4.berkeley.edu or via snail-mail to the address on the back cover of this newsletter.
Solar Observations

The shadow points on these two shadow trackers were collected at Lawrence Hall of Science in Berkeley, California, on the same day at the same times. One variable was different in the orientation of the Sun Trackers. What was that variable? Why are the points different?

For more images of shadows and solar energy applications, check out FOSSweb at http://www.fossweb.com. If you’d like to get answers to these questions, you can e-mail Sue Jagoda at skjagoda@uclink4.berkeley.edu or look for the answers in the next FOSS Newsletter.

These shadows were traced during a teacher workshop in Sunnyvale, California, in August 1999. Which direction was the person facing whose shadow was being traced? Do you have enough evidence to be certain of your answer? What else would you like to know?

The Sunstones is a sculpture located at Lawrence Hall of Science. It is oriented so that from this view you are looking directly west. During what time of year was this photo taken?
This issue of the FOSS Newsletter focuses on books for the FOSS modules for grades 1 and 2. These reviews supplement the Resources section found at the back of the Teacher Guide. In addition to the books listed here, FOSS Science Stories for grades 1 and 2 make excellent teaching tools, and they are available now (see page 1). For more reading resources, check out the FOSSweb site at http://www.fossweb.com or the searchable database at http://www.lhs.berkeley.edu/foss.

Air and Weather Module

Can You See the Wind!

This simple reader describes how wind is created and how we can “see” it—in sand dunes, flags, trees, kites, and clouds.

I Call It Sky

Rhythmic text and playful illustrations invite children to explore basic weather elements by experiencing different kinds of weather—rain, fog, wind, or sunshine.

Balance and Motion Module
Back and Forth—The Way Things Move Series

Simple text and photographs provide examples of back-and-forth movement, including the pendulum in a clock, a child in a rocking chair, and a tree in the wind.

Forces and Movement—Straightforward Science Series

Introduces the basic science behind forces and movement and presents experiments to show how they work.

Mirette and Bellini Cross Niagara Falls

With the help of a young immigrant boy they meet on their crossing to America, two famous tightrope walkers manage to survive the treachery of a rival showman.

On the Move—Science Starters

Provides instructions for a variety of activities, which introduce some basic principles of physics.
Bread Is for Eating
Spanish and English are blended within this graceful narrative of the making of bread from grain to table.

Pebbles, Sand, and Silt Module

Sand
“Inspector” Seagull uses his magnifying glass to look closely at different colors of sand grains to see what they are made of and where they came from.

If You Find a Rock
Poetic text and thoughtfully composed photographs combine to explore the variety and purpose of rocks.

Solid, Liquid or Gas? (Rookie Read-About Science Series)
This photo essay defines matter—solids, liquids, and gases—and gives several examples of each.

Accidents May Happen
Fifty inventions discovered by mistake are described with cartoon flourishes. Includes everything from the initial establishment of Avon by a frustrated door-to-door bookseller to the science behind artificial sweeteners.

The Kid Who Invented the Popsicle: And Other Surprising Stories About Inventions
This book lists a number of “inventions” and includes a brief description of how they came to be. Inventions include blue jeans, doughnuts, matches, miniature golf, and Scrabble.

If you have a book you’d like to recommend for inclusion as a FOSS resource, either for students or teachers, please let us know. You can send your review to Sue Jagoda, Lawrence Hall of Science, University of California, Berkeley, CA 94720-5200, or e-mail it to skjagoda@uclink4.berkeley.edu.
Online Connections for FOSS Modules

The World Wide Web is a great resource for finding public-domain images that can be used in printed reports or multimedia presentations. Here are some of the sites that the FOSS staff has found to be particularly useful. If you have some sites you would like to let us know about, send the URL and site description to Sue Jagoda via e-mail to skjagoda@uclink4.berkeley.edu or via snail mail to FOSS at the Lawrence Hall of Science (address on the back cover).

National Image Library
National Conservation Center
U.S. Fish & Wildlife Service
http://www.fws.nrcs.org/

This site provides a great assortment of copyright-free wildlife, scenery, and conservation images from USFWS library. A search function is available.

NOAA Photo Library
National Oceanographic and Atmospheric Administration (NOAA)
http://www.photolib.noaa.gov/

There are over 16,000 digitized images in the NOAA Photo Library, including everything from National Weather Service photos to marine organisms imagery. You can browse special albums by the National Severe Storms Laboratory, NOAA in Space, and the National Undersea Research Program, or you can search the entire image collection. You can download the images in low-resolution or high-resolution versions.

Park Geology Tour of National Parks
National Park Service, Geologic Resources Division
http://www.acd.nps.gov/grd/

This site includes a photo collection, text information, and links for most of the U.S. national parks that have points of geologic interest. You can browse categories such as basin and range, caves, Colorado Plateau, glaciers, volcanoes, fossils, and more. Or you can search the Geology Photo Database.

Look for more online resources at http://www.fossweb.com.
FOSS Institutes

Delta Education hosts informational institutes and workshops in conjunction with the NSTA Area and National Conventions. On the Wednesday prior to the conference, the FOSS staff presents a one-day FOSS K–6 Introductory Institute. During the conference, the staff presents half-day FOSS Middle School Short Courses and 75-minute K–8 workshops featuring various program components and grade levels. These institutes and workshops are designed for all educators—teachers and administrators—who are interested in finding out what FOSS is, who developed it, what philosophy of education it supports, and to begin networking with other FOSS users. A lot of time is spent working with the program materials, doing investigations and engaging in inquiry.

During the summer Delta hosts Implementation/Leadership Institutes. These meetings are designed for educators who have adopted FOSS and are into their implementation process. Some time will be spent working with the FOSS materials, but a greater proportion of time will be spent delving into issues of management, teacher preparation, materials maintenance, and a host of other subjects.

Most Institutes are led by FOSS development staff. There is no charge, but participants must register in advance to attend. Times and locations are listed in the calendar. To secure your spot at the Institute of your choice, call, write, fax, or e-mail:

Pam Frisoni
Delta Education, Inc.
80 Northwest Boulevard
Nashua, NH 03063
pfrisoni@delta-edu.com
Phone: 1.800.258.1302 ext. 503
Fax: 603.579.3504

☑ Yes! I’m interested in attending a FOSS Institute or Workshop. Please send me information for

(FOSS Institute name, date, location)

Name
Title
School District
Address
City State Zip
Daytime Phone Fax

☑ I did not receive this FOSS newsletter in the mail. Please add my name to the mailing list.

NSTA NATIONAL CONVENTION 2001
March 22–25 St. Louis, MO

FOSS ADVANCED INSTITUTE
(by invitation only)
March 20–21 FOSS Research into Practice Presented by Dr. Larry Lowery at the St. Louis Marriott

FOSS K–6 INTRODUCTORY INSTITUTE
Wednesday, March 21
8:00–4:00 at the St. Louis Marriott

The following NSTA St. Louis Workshops will be held in America’s Center, Room 151

Thursday, March 22
8:00–11:30 FOSS Middle School Short Course: Planetary Science Introduction

Friday, March 23
8:00–11:30 FOSS Middle School Short Course: Human Brain and Senses Introduction
1:00–4:30 FOSS Middle School Short Course: Electronics Introduction

Saturday, March 24
8:00–9:15 FOSS Grades 3–6 Overview featuring Variables
10:00–11:15 FOSS Science Stories for Grades 1–6 featuring Ideas and Inventions
12:00–1:15 FOSS Assessment featuring Magnetism and Electricity
2:00–3:15 FOSS Middle School Program Overview featuring Earth History
4:00–5:15 FOSS K–2 Overview featuring Balance and Motion

FOSS LEADERSHIP INSTITUTE
(by invitation only)
June 14–15 Lawrence Hall of Science, Berkeley, CA

FOSS HUMAN BRAIN AND SENSES WORKSHOP
July 8–13 Northeastern University, Boston, MA

FOSS MIDDLE SCHOOL LEADERSHIP INSTITUTE
(by invitation only)
July 30–31 Lawrence Hall of Science, Berkeley, CA

FOSS PLANETARY SCIENCE WORKSHOP
August 12–17 Lunar and Planetary Institute, Houston, TX

NSTA FALL AREA CONVENTIONS
October 25–27 Salt Lake City, UT
November 8–10 Columbus, OH
December 6–8 Memphis, TN

FOSS K–6 Introductory Institutes
(at NSTA Fall Conventions)
October 24
November 7
December 5

NSTA NATIONAL CONVENTION 2002
March 27–30, 2002 San Diego, CA
About This Newsletter . . .

The intent of the FOSS Newsletter is to help FOSS users develop a network of support across the country. Delta Education and LHS will work together to bring you news two times per year, including articles regarding the latest development of modules, tips about management from teachers and administrators, ways to make connections with other teachers and districts, extensions and reading materials to add to modules you are already using, and informative articles about good educational practices.

So, we need your help. If you have a tip that enhances the teaching of FOSS or would like to submit an article (with photos) about exciting activities or school programs, management, implementation projects, etc., please send them in. We would also like to hear from your students, whether they have questions about the content, projects they have done, photos or other images they have created, or insights into how they use the World Wide Web with FOSS. Send your contributions to:

FOSS Newsletter
Lawrence Hall of Science
University of California
Berkeley, CA 94720-5200

The deadline for submissions to the next issue is June 29, 2001. We’re waiting to hear from you.

Delta FOSS Sales and Marketing Division
800.258.1302
603.889.8899
fax 603.579.3504

Tom Guetling
Vice President Sales & Marketing
tguetling@delta-edu.com

Pam Frisoni
Marketing Communications Coordinator
pfrisoni@delta-edu.com

Dana Koch
Director of Sales
dkoch@delta-edu.com

Karen Stevens
Marketing Manager
kstevens@delta-edu.com

Dave Vissoe
Director of Marketing
dvissoe@delta-edu.com

FOSS Regional Sales Managers
All Regional Managers have toll-free voice mail at 800.258.1302

Bill Corbett
Nashua, NH
603.579.3541
bcorbett@delta-edu.com

Harold Edwards
Pleasantville, NJ
609.646.0478
Heduw0@aol.com

Verne Isbell
Keller, TX
817.379.2013
FOSS4K8@aol.com

Comer Johnson
Folsom, CA
916.983.1702
FOSSK8@aol.com

Steve Jones
Hobe Sound, FL
561.546.9587
dayjekav@aol.com

David Kavlick
Medina, OH
330.722.2875
davkav@aol.com

Adrienne Maughan
Loveland, OH
513.314.9247
FOSSRepAM@aol.com

Tom Pence
Oswego, IL
630.215.3017
tpence7228@aol.com

Gary Seymour
McHenry, IL
773.973.7500
Seymourdelta@aol.com

Dean Taylor
Flagstaff, AZ
520.527.5717
MRFOSS@aol.com

Lisa Wood
Pepperell, MA
800.258.1302
delawood@aol.com

For information about purchasing FOSS or for the phone number of your regional representative, call Delta Education, toll free at: 800.258.1302
Or fax at: 603.579.3504
Or visit our website at: www.delta-education.com

Delta Education
80 Northwest Boulevard
Nashua, NH 03063

For information about the development of the FOSS program, contact:
Larry Malone or Linda De Lucchi
FOSS Program
Lawrence Hall of Science
University of California
Berkeley, CA 94720
voice: 510.642.8941
FAX: 510.642.7387
Internet:
lmalone@uclink4.berkeley.edu
FOSS on the World Wide Web:
http://www.fossweb.com
http://www.lhs.berkeley.edu/FOSS/

Please remove my name from the mailing list.