Taking FOSS Outdoors

If we want children to flourish, to become truly empowered, then let us allow them to love the earth before we ask them to save it.

David Sobel, Beyond Ecophobia

INTRODUCTION

During its first 20 years, FOSS focused on classroom science. The primary goal was to develop a scientifically literate population with an ever-growing knowledge of the natural world and the interactions and organizational models that govern and explain it. In recent years, it has become clear that we have a larger responsibility to the students we touch with our program. We have to extend classroom learning into the field to bring the science concepts and principles to life. Applying concepts explored in the classroom to another setting, a real-world one in the schoolyard, happens to be effective for academic achievement, but it is also important for students’ personal well-being.

In the process of validating classroom learning among the schoolyard trees and shrubs, down in the weeds on the asphalt, and in the sky overhead, students will develop a relationship with nature. It is our relationship with natural systems that allows us to care deeply for these systems. In order for students in our schools today to save Earth, and save it they must, they first have to feel the pulse, smell the breath, and hear the music of nature. So pack up your explorer’s kit, throw open the door, and join us. We’re taking FOSS outdoors.
WHAT DOES FOSS LOOK LIKE OUTDOORS?

Visualize taking FOSS outdoors: Students exit the classroom in an orderly fashion, their direction and purpose undeterred by the joyful sounds of other students at recess. With focused enthusiasm, the band of young scientists moves toward the edge of the schoolyard. Each student is carrying something, maybe a clipboard for recording, a container for collecting, or a hand lens for observing. Students reach their destination and quickly form a sharing circle. After a brief orientation, students disperse and begin searching the tall grass along the chain-link fence. All are independently recording in their science notebooks, and all are on task. The teacher moves about with intention, speaking to a few students at a time. After several more minutes of this work, the teacher rings a chime. Students freeze, raise one arm, and look at her. She rings the chime again. Students leave their materials in their spots and re-form their sharing circle with their teacher for discussion or additional instructions.

This scenario could be anywhere in the country with a regular classroom teacher using any of the FOSS modules. Taking FOSS outdoors is a natural extension of the classroom work. It looks and feels a lot like standard FOSS activities. Many of the routines you use inside the classroom can be implemented outdoors as well. Success, however, does depend on a few specialized skills and specific preparation to maximize outdoor teaching efficiency.

Expect the enthusiasm, participation, engagement, group discussions, and effort on notebook entries to be heightened during and after an outdoor experience. Even the simplest outdoor activities create a surge of positive energy. It is difficult to determine whether the enthusiasm and commitment students exhibit when doing FOSS outdoors comes from the physical movement needed to get to the outdoor space, from exercising content they already know in a different setting, or simply from the joy of being outdoors. Expect students to be a bit louder and more excited when they are learning in the schoolyard. The enlarged space allows for this expansion in energy level, which benefits some students immensely. All students benefit from applying and extending their science and engineering practices and content knowledge to the real-world setting of the schoolyard.
GOALS AND OBJECTIVES

The three program goals set down 20 years ago still serve FOSS well. They are: (1) scientific literacy for all students, (2) instructional efficiency and support for teachers, and (3) systemic reform.

The march into the schoolyard has three objectives that relate to the goal for students. First, the outdoor activities continue and extend the learning that starts in the classroom. The outdoor activities provide more experience with the content and additional opportunities to practice skills and techniques developed in the classroom.

Second, venturing out provides opportunities for students to discover applications and examples of classroom content and concepts. The classroom activities work well for developing sound conceptual science knowledge. That knowledge, however, is constrained by the context in which the concepts are taught. For students to take the next level of ownership of that knowledge, they need to see how it applies and generalizes in the broader context of the world. Leaving the classroom context with a head full of new ideas and new tools for observation enriches the learning.

The third objective is to connect students with nature. On the boundaries of the planned, structured experiences are the intangibles that may spark a new relationship with natural systems. It may start with a multisensory experience in the native environment—wind, wet, cold, sunshine, plants, insects, on and on—and advance to an awareness of the diversity of resources surrounding the school. It might evolve into a consciousness of place, followed by a flood of questions about the structure, organization, and operation of the schoolyard ecosystem. When students bond with nature, they have accepted a precious gift, and we have accomplished something important.
MANAGING SPACE

FOSS outdoor activities are designed to be successful in a diversity of schoolyards. Some schoolyards are covered in asphalt, while others have been transformed into thoughtfully-designed outdoor learning environments. Some include large, grassy areas without trees, and others are covered with mulch. One outdoor space may be circled by a variety of mature trees; the next may have recently planted maples and pines scattered about. The space may reflect thoughtful attention or neglect. Nevertheless, FOSS believes that bringing students into the fresh air under a changing sky, into the available outdoor space, will awaken their well-being and stimulate their understanding of science concepts.

Choosing Outdoor Spaces

Whether your school’s landscape is wild, manicured, or asphalt, there are more options for outdoor learning spaces than might initially meet the eye. This section will help you choose the best spaces near your school for the FOSS outdoor activity.

Before choosing your outdoor study areas, get to know your outdoor spaces. Look closely at all areas surrounding the school building—even places that students do not normally go. Many seemingly uninteresting monoculture fields are flourishing with a diversity of different grass species and other small flowering plants. Consider the pile of leaves that blew into a corner of your schoolyard; a crack in the concrete; or the ragged, weedy edge of the field where the lawn mower doesn’t reach. These are places that provide small animals with what they need—food, shelter, water, and space. Transition zones where vegetation changes from shrubbery to lawn or garden to field can present interesting study sites. As you ponder the learning possibilities in and around your schoolyard, consider these characteristics.

Accessibility. You should be able to walk from your classroom to your outdoor site in 2–5 minutes. Sites farther than 10 minutes away can be considered for special outings, but are not realistic for frequent access, given the time constraints of a typical school day. Check out physical access if you have students whose mobility requires consideration. Be aware of hazardous surfaces (water, ice, or debris) and caution students to be careful.
Managing Space

Purpose. Determine the space needs of the activity. Some activities will require open space, such as a field or blacktop. Other activities work better if students have a more diverse landscape with varying environmental conditions (temperature, light intensity, wind). Some activities require a variety of human-made materials to measure or test for certain properties (such as metal structures to test for magnetism). Different areas will serve different needs.

Size. The space should be large enough for the class to work comfortably but small enough for you to supervise all students easily. You always need to be able to see all your students, and your students need to be close enough to hear you and your attention signal.

Boundaries. For any space you intend to use, make sure you have clearly defined the boundaries before heading outdoors with your students. Ideally, the landscape will be helpful. For example, stay between the sidewalk and the tree line. If natural markers are not present, you may need to bring along traffic cones or their equivalent to define limits. In general, consider if there are any distractions or hazards, such as debris, poisonous plants, or human traffic.

Fostering and Maintaining Diversity

For life science and earth science studies, ideally you want your site to have a variety of living and dead plant matter, and a range of surface features and environmental conditions. Survey your site to see if it includes places that have survived unmanaged. Even a small wild zone along a fence or behind the maintenance area or an adjacent field can be a valuable resource. It is important for students to see that living things carry on, even in the city, without human assistance.

Enhancing your schoolyard. You may be able to secure a small section of the schoolyard lawn from the school custodian, gardener or grounds keeper, and allow it to go feral to compare it to the adjacent managed school grounds. Consult with your principal to see if this can be arranged.

Another way to enhance biodiversity is to encourage decomposition by letting fallen leaves and/or lawn clippings to remain on an area of soil over the winter. This gives worms and other decomposers something to eat, which, in turn, provides food for everything else. Make sure all necessary parties are aware of your intentions to leave an area untouched. If you find that you need administrative permission, consider ways to contain and mark the unkempt (but not unloved) area so that it clearly represents an intentional project.

Taking FOSS Outdoors
Tread lightly. Your schoolyard study areas will potentially experience some user impact. It is important to teach students to minimize their environmental footprint. Otherwise, the living things they disturb might decline or seek a safer place to live. Unless the class is intentionally collecting study specimens, nothing natural should be picked up or removed from the area. This is a good opportunity to introduce the “leave no trace” philosophy, which, in an effort to preserve an area for recreation, encourages us to leave natural objects as we find them.

At some schools, the outdoor space is used by so many classrooms that a system is needed to schedule outdoor activities. A sign-up sheet can be used to reserve outdoor spaces just as is done to reserve other school resources, such as a computer cart. Check the site the morning before taking the class outdoors to make sure the area is ready for students to investigate.

Weather
Weather can present great challenges and exceptional experiences. Inclement weather can provide an excellent opportunity to study environmental concepts: water drainage, wind impact, plant and animal survival adaptations. (There is nothing like being out in a snowstorm to appreciate the value of insulation!) Making extra preparations to study out in the elements has value. If the activity can be undertaken with some assurance of success, go for it. Over time, students acclimate to all sorts of weather and will actually look forward to the challenge of going out in weather.

Clothing. The right gear at the right time can make all the difference. Baseball caps stored at school can work well in a light rain and are often essential as sun protection in warmer climates. Baseball caps in a light rain are especially helpful for students who wear glasses. If possible, invest in a set of rain ponchos to make it possible to go out in wet weather. Communicate regularly with students and family members about upcoming outdoor experiences so that students come to school prepared to work in the outdoor study area.

Wind. A stiff breeze can fling your materials into disarray or send notebooks flying. If you anticipate wind, discuss ways to keep materials from blowing away (such as using natural paperweights or taping down nonliving specimens). If there is a protected area where you and your class can take shelter briefly, the activity can continue. You may have to chase down a couple of notebook sheets before students become accustomed to securing papers and other light materials.
Safety and Comfort

Be prepared for the unexpected. Insect stings (ants, bees, wasps, mosquitoes) can be alarmingly painful for young students, particularly if they have not been stung before. Although extremely unlikely in a schoolyard, have a plan developed with students in advance as to how to retreat with purpose if someone accidentally disturbs a nest. You should already know who is allergic and who has never been stung before.

Skin-irritating plants (poison oak, poison ivy, poison sumac, nettles) can certainly put a damper on a field trip. Take a moment, and get to know your local irritants and toxic plants. The rule “leaves of three, let it be” works only for poison ivy and poison oak. Poison sumac has 7–13 leaves on a branch. Stinging nettle feels much like being stung by a jellyfish and can be very frightening for students who have never experienced it. Often, the irritation subsides within a few minutes; do not treat irritated skin with bleach or rubbing alcohol.

Lyme disease is a treatable bacterial infection, carried by deer ticks. It is present throughout the country, but is particularly present in eastern states. It is possible to get sick without finding a tick bite. If you or your students experience flu-like symptoms that are severe enough to see a doctor, make sure that doctor is aware of any outdoor exposure.

If you are out and about in tick country, tuck pant legs into socks and take a few minutes at the end of the trip to pair up and look for obvious ticks on clothing and on the neck and shoulders of a partner.

SAFETY NOTE

Refer to FOSSweb, Teaching Tools, Taking FOSS Outdoors for a Tick Awareness letter you may want to send home to parents.
MANAGING TIME

When to Teach

When you start a new module, anticipate when you might want to go outdoors, and schedule the time. The At-a-Glance chart in each investigation can help with this planning.

Time of year. If possible, plan the time of year when you will teach particular modules. In the northern tier, life science and earth science modules would be best in the fall or spring. In the southern tier, it might be best to teach life science modules in the winter when it is not uncomfortably hot during the day. Good times to coordinate your outdoor activities with the school calendar include minimum days or other disruptions to the regular schedule, days just before or after school vacations, and days following district testing.

Time of day. Consider the time of day you teach your activities. Established schedules are often difficult to alter, but you might find it advantageous to do so. If you do a lot of seat work in the mornings, you may want to break the routine occasionally with an outdoor activity. Students will return to the classroom refreshed and ready to focus on the next seated activity you have planned.

If you live in a climate where it gets really hot during the school day, you might want to teach outdoors early in the day. Conversely, if you live in a cold climate, you might want to do your winter outdoor activities midday. If you’re looking for wildlife (birds, insects, mammals), the best time to go outdoors might be in the morning.

If you plan to use a part of the schoolyard that is heavily populated at predictable times during the day (lunch, physical education), plan to venture out at a time when other activities are minimal.

Stay flexible. If you are studying the Water and Climate Module, for example, be prepared to dash out if it rains or snows. One of the delights of outdoor education is going out when nature is putting on a show. Inquiring minds rush out for the experience when timid observers retreat.

Specific times. Some activities require a sunny day. Measuring shadows, solar water heaters, and solar cell investigations require sunshine. It can be tricky to move on without completing specific observations or experiments. Be creative. You may need to proceed with the module and return to the sunny-day activity when the Sun finally comes out.
Managing Time

Instructional Time
An outdoor activity might require 15 minutes, or it might require an hour. Only part of the time budgeted for outdoor learning is actually spent interacting with the schoolyard terrain, plants, and animals. The rest is management.

Travel time. It will take perhaps 10 minutes from the announcement that it is time to decamp for the schoolyard and the time you arrive there. It will take several minutes to describe and distribute materials, get the appropriate clothing, line up, and travel in an orderly fashion to the designated location. Travel back to the classroom will take another 3–4 minutes.

Instructions. Outdoors, students form a sharing circle. It will take 2–4 minutes to review rules, set the boundaries for the activity, describe the challenge, and distribute materials.

Investigation time. Students break into pairs or groups to engage in the outdoor investigation. This might be as short as 8–10 minutes or as long as 30–40 minutes.

Wrap-up. Students return to the sharing circle to share and discuss their discoveries for several minutes.

Classroom follow-up. Frequently, students bring artifacts back to class to display in a classroom museum or to set up for further observation.

Some outdoor activities call for more flexible allocations of time. An activity may call for setup early in the day with periodic monitoring or measuring throughout the day.

SAFETY NOTE
Students should not disturb or collect live organisms in their natural habitats unless instructed to do so by the teacher.
MANAGING MATERIALS

When students step onto the schoolyard, they are field scientists. In the field, there is no lab bench where investigations can be set up, and there is no ready supply of materials. The field equipment must be minimal, portable, and durable so that it can be easily and safely transported from the classroom and back.

Field Equipment

A student’s outdoor bag will contain the specific materials needed for the activity of the day as well as some core necessities, such as a hand lens and a writing tool.

Student outdoor bags might contain these basics.

- Pencils/pens
- Hand lens on brightly colored string or yarn
- Colored pencils or crayons
- Measuring tape
- Vials with caps
- Clipboard or notebook
- Seat pad

Note that pens and pencils each have drawbacks: pencil points break, and pen ink freezes in extremely cold weather. Seat pads can simply be several sheets of newspaper covered with a plastic bag.

Your basic teacher’s outdoor equipment bag will include a few backup student materials and some items for helping with management.

- Extra pencils, pens, hand lenses, vials, and cups
- Attention signal (chime, whistle, or cowbell)
- Tissues and paper towels
- Basic first-aid kit (adhesive bandages)
- Phone (if leaving the school grounds)
- Student class list (particularly if you teach more than one class) with appropriate student health information and/or permission slips if away from school.
Transporting Materials
Getting materials to and from the outdoor site is a shared responsibility. Students will carry their personal equipment, and class materials can be distributed among students or tackled as a teacher task. Students always carry something to the outdoor site, even when it would be easier for you to carry everything. This is a subtle reminder that students are heading out for science, not recess. A hand lens serves as such a token.

Some teachers prefer to have students carry only their clipboards or notebooks and pencils, while the teachers carry all the field equipment in a canvas shopping bag or milk crate to the outdoor home base. Other teachers use a wagon or wheelie crate to transport the equipment. After teaching a few outdoor activities, you will discover what works best for you. Students will get excited when they see you preparing your transport system for an outdoor activity.

Water. Water is often used during outdoor activities. If you are lucky, there will be a tap near your study site. More likely, you will carry water from the school building. Recycled plastic jugs with screw caps and smaller bottles with screw caps are good vessels.

At times, you will want open containers of water, such as buckets or basins (for washing rocks, cleaning containers, and so on). Half-filled buckets can be carried a short distance, but basins should be carried empty and filled from jugs.

You rarely have to bring water back inside. Recycle leftover water by watering schoolyard plants. Make this practice overt to help students develop respect for this vital natural resource.

Creating Outdoor Tools
A sturdy writing surface is essential for science in the schoolyard. A bound notebook (composition book) is excellent. A serviceable clipboard can be made from a piece of cardboard and a binder clip. Use a paper cutter to cut sturdy cardboard slightly larger than a sheet of notebook paper. Place a medium-size binder clip at the top and a large elastic band around the bottom (to keep the paper from flapping up). Tie a pencil on a brightly colored string to the binder clip. When a new tool is introduced, it will be a novelty. Anticipate that students will be curious and excited with the new items when first used, and as the novelty fades, students will carry on as usual, using the tool productively.
A group writing surface is important sometimes. You can use blue painter's tape to attach a sheet of chart paper temporarily to a wall or clip it onto a chain-link fence with binder clips or clothespins. On windy days, attach all four corners.

A small pack can serve as a hands-free means for students to tote their equipment. Little backpacks are excellent, but a serviceable low-cost satchel can be crafted from a large plastic zip bag and string. Purchase enough gallon-size zip bags for your class. Punch two holes just under the ends of the zipper. (This reduces tearing.) Cut the strings about 1 meter long. Tie sturdy knots that will not come undone. Store the string inside the bag after use to prevent tangling with other bags.

Hand lenses may disappear when students place them on the ground to perform a task. Run bright-colored string or yarn through holes in the lenses for students to wear. If your hand lenses do not already have holes, see if you can get holes drilled through the handles.
MANAGING STUDENTS

Going outdoors regularly is the best way to develop a productive and joyful working relationship with students in the outdoors. When students realize that going outdoors to learn is not a special event but, rather, a science event that will occur routinely, you may be surprised at how quickly they adapt to their expanded, enriched classroom.

Before the First Outing

It is always important to let the school administration know that you and your students will periodically be out of the classroom. If you are planning to leave the school grounds, remember to file a flight plan describing your itinerary, anticipated time of return, and contact partners.

At the beginning of the school year, send a letter home to families, letting them know that learning will extend to the schoolyard and, possibly, beyond. It may be possible to have a signed permission slip for impromptu walking field trips outside the schoolyard. Have families put their contact information and specific student health information on the permission slip. Photocopy these, and have one set of copies in the office and another set in a zip bag in your outdoor equipment bag for emergencies.

Tell students at the beginning of the year that they will be going outdoors often during science class. Remember to let them know a day in advance that they will be going outdoors. Let them know what it means to dress appropriately. This is especially important in the cold or stormy season when students will need proper clothing for safety and comfort. Your class can go out in any weather if students are dressed appropriately. A consistent system of reminders and clothing preparation will train students to be prepared.

Safety rules. Creating consistent, considerate rules of engagement is important. Learning is enhanced, and behavior problems are largely averted by establishing norms of outdoor study that students participate in developing and understand.

Have a discussion about what students think constitutes proper preparation and behavior for leaving the classroom to study outdoors.
Taking FOSS Outdoors

(This discussion may be most productive after an initial orientation excursion to survey the schoolyard resources.) Have students generate a list of behaviors that they can adopt and respect. You may want to generate a second list of behaviors that you will agree to as leader of the adventure. Introduce as much formality into the process as you deem important. Develop the idea of a contract that all members of the class sign. Post the contract in your classroom and reference the FOSS Outdoor Safety poster. Here are the behaviors and rules that should appear on the list.

- Walk quickly and quietly outdoors.
- Outdoor science is not recess.
- Listen to the teacher’s instructions.
- Freeze when the teacher rings the bell.
- Stay inside the boundaries.
- Don’t make noise near the classrooms.
- Don’t injure plants and animals in any way.
- Leave the outdoor environment the way you found it. Never release living organisms into the local environment unless they were found there.

First Outing

Your first trip to the schoolyard may be a bit chaotic. Students may be distracted by other activities going on, and they may lapse into recess mode. A few precautions will minimize disruptive behaviors.

The path of egress. Determine which doors are available to access your outdoor site. Make sure you follow your school’s policy for using auxiliary doors during the school day. Do they need to be closed at all times, or can you prop one open? Are they locked from the outside? You may be able to access keys in order to reduce travel time. When possible, avoid using the door you would normally use for recess. Students have a different mind-set when they walk onto the schoolyard through the “outdoor classroom” door.

Orientation activity. Consider an orientation activity for your first outing. The stated goal might be a site tour to inventory the resources on hand. Your primary agenda, however, is to dissipate the energy generated by the novelty of leaving the classroom during class time. Focus on preparing your transition to the outdoors, moving out in a purposeful and orderly fashion and arriving at your predetermined “home base,” a destination that you will always go to initially when you leave the classroom. Form a sharing circle, a process you will use time
and again. Tour the schoolyard, proceeding as a whole group, then ask students to walk as individuals for a few minutes, then with a partner for a minute, and finally with a group of four. This gives students a brief experience with each of the four ways they will be organized for various outdoor activities. End with another sharing circle and an orderly return to the classroom.

Challenging students. Sometimes the class will be inattentive or inappropriately rambunctious. At such times, it is appropriate to direct students back to the classroom. Breaking the contract has consequences, and students need to understand that the opportunity to learn in nature is a privilege. They will remember that day.

In rare instances, you may have an individual student who is regularly not able to comply. Interestingly, this is probably not the student who you anticipated would have difficulty. Often, students who have difficulty with attention and performance in traditional classroom seat work shine and take leadership outdoors. In the case of the noncompliant student, it may be necessary to ask him or her to take a time-out if he or she is able to sit without disrupting others’ experiences. If the bad behavior persists, you may be obliged to return to the classroom early. Even so, it is important to give the student a chance to redeem himself or herself the next time you go outdoors.

Routines

Routines are good for management. They impose a measure of self-monitoring because they represent behaviors that are already known and have been practiced. If one person transgresses during a routine, other students are able to intervene to help you with student management. Here are a few routines that may work for you.

Science door. Have you ever watched a group of students pass through the exterior door on their way to recess? As soon as one foot hits the asphalt, they start running and cheering. It is a beautiful sight. Clearly, this is not how you want students to leave the building as you head out for science. One subtle but effective way to distinguish science from recess is to use a different door for science than for recess. Refer to this exit as the “learning door.”

Transition behavior. Be explicit about how you want students to walk through the hallways and into the schoolyard. If students exit wildly, simply ring the bell, have them line up inside, and try it again. If this continues to be a problem, return to the classroom and try another day. By consistently showing students that this behavior limits their time outdoors, they usually adopt more compliant behavior.
Home base. Establish a destination in the schoolyard where every outdoor activity will begin. Students should walk directly there after leaving the school building. Choose a place that is level and, if possible, away from classroom windows and popular recess areas.

Sharing circle. When students arrive at home base, they should form a large sharing circle—everyone in a single ring with no students hanging back. This is an effective way to maintain eye contact with all students while you give instructions or share findings. Take a position in the circle where you are facing the Sun. This way, you will know that students won’t be distracted by having the Sun’s glare in their eyes. A sharing circle is also used to transition from one task to another, to summarize an activity, or anytime you need to regroup.

Techniques for forming a circle vary. One method is “magnetic feet.” Students spread their legs to meet their neighbors’ feet. Magically, these magnets turn off when you direct them to do so. Students may also stand with hands on hips, elbows touching with neighbors’. Pick or create a method that works with your students.

To speed up the formation of a sharing circle, try the tried-and-true countdown from five, with the objective that everyone is in a proper circle by zero.

Attention signal. Adopt a uniform signal for attention. It is essential that students respond to the attention signal immediately. You may choose the same method you use in the classroom or, if this is not appropriate for the outdoors, try one of these.

- A chime, bell, whistle, or other singular and loud sound. These are appropriate outdoors. When students hear it, they stop, look, and listen.
- Count down from five and when you get to one, students are silent with their hands up. This might not be appropriate outdoors. A countdown from ten can be used to call students back to a sharing circle.
- Clap call and response. You clap a pattern, and students return it by repeating the clapping pattern. This works if students are all nearby.

Focus question. Inquiry-based activities are guided by a question. This pedagogical routine should extend into the schoolyard, too. Students need to know why they are engaged in the outdoor investigation. They should
Managing Students

expect to write the focus question in their notebooks at the outset of the investigation and produce an answer at the end of the investigation.

Boundaries. Setting boundaries allows students freedom within a defined space. Because different activities may require different locations, it is always important to be explicit about where students are allowed to travel during the outdoor activity.

Buddy system. You may want to institute a buddy system, particularly if you leave the schoolyard. When participants are paired off, tell them that each individual is responsible at all times for the whereabouts and safety of his or her buddy. It is helpful and fun to number the pairs in order to count off quickly and account for everyone.

Considerations for Students with Disabilities

FOSS evolved from pioneering work done in the 1970s with students with physical disabilities. The legacy of that work is that FOSS investigations incorporate multisensory methods, not only to accommodate students with physical and learning disabilities, but also to maximize information gathering for all students. Strategies that provide opportunities to learn for students with disabilities turn out to be good strategies for all students.

All students benefit from opportunities to experience the natural world outdoors. For students with disabilities, consider how to make the schoolyard accessible and safe so that they can work with a degree of independence. This requires advance planning to make sure that the student, his or her family, the special education teacher, and others involved in the child’s school experience are informed and have input into the process.

Whenever a student with a disability is successful in a full-inclusion classroom, there is a behind-the-scenes collaborative effort of caring educators who work together to support the student with just the right amount of scaffolding. In advance of teaching the first outdoor activity, contact the special education teachers in charge of each student’s Individualized Education Plan (IEP), and have them review the planned outdoor experiences. Ask the teachers to recommend modifications that will better accommodate and support each student. Invite the special educators to join the class for the outdoor activity.
Attention and language-based disabilities. Students with attention and behavioral issues often thrive when they are engaged in science outdoors. A fenced area will help you to both keep track of students and provide a sense of safety. Having students work with partners (buddies) allows students to look after each other. Provide short, structured opportunities for students to participate in outdoor activities in a clearly defined space, and expand the boundaries and time expectations as students earn your trust and confidence.

Consider students’ communication requirements, and plan to bring specialty devices outdoors with you. This might be as simple as some picture cue cards to help enhance your message or an electronic communication device such as a computer or tablet.

Physical disabilities and visual impairments. In the Getting Ready section of each outdoor activity, we ask that the teacher decide where the outdoor activity should be taught. You may find that certain locations are better than others for the purposes of developing science concepts and meeting the physical needs of students with disabilities. Get to know your schoolyard really well, and try to experience it as your students do.

One side of most schoolyards is typically a parking lot, and the other three sides have spaces accessible to students for work and play. If you have a student with a physical disability, you need to consider if the terrain provides for good mobility for the student. Often, schoolyards are accessible because they are covered in asphalt. For many of the FOSS outdoor activities, an asphalt area is appropriate to use. When you want to use a greener location, make sure wheelchairs or crutches will work on these new surfaces. If the surface will be a mobility challenge, see if a paraprofessional or an educational
assistant is able to help the student. If someone is not able to join you, consider if a classmate can help. If this is not an option, then consider working at a transition zone where the grass meets the asphalt.

A student with a visual impairment should make a scouting trip to the outdoor site with a mobility instructor to get the lay of the land and to learn where things are located. If the student becomes familiar with and knows how to navigate his or her outdoor surroundings, it will allow for more independence. Even so, during the actual outdoor activity, the student may need someone to quietly describe the terrain ahead and may need a fellow student’s arm for balance and security.

If a student struggles with gross motor coordination, uneven ground may present a challenge. Just as you would in the classroom, begin by offering more support, and slowly pull back on this assistance as students become more comfortable with their stamina, security, and endurance with regular outdoor activities.

Sensory sensitivity. For a student with tactile-sensitivity issues, make it clear that he or she may, for example, observe as a classmate digs in the soil to collect a sample. Over time, this student may feel better able to participate by using gloves or by washing his or her hands as soon as the digging is complete. Knowing where each student falls on the continuum of a disability will help you decide when to hold back asking a student to fully participate, when to allow him or her to just observe, and when to give a gentle nudge and expect more active participation.

For students with sensory disorders, the outdoors is often a calming space. Consider where the quietest place in the schoolyard is, and use this more often if you have students with sensitivity to noise.

No matter what the disability, educators have found success taking students outdoors. With advance planning, communication with the student and the special education team, and a little extra effort, you, too, can provide a rich, safe outdoor learning experience for all your students.
TEACHING STRATEGIES

In the beginning, you may find that students regularly use descriptive terms such as “icky,” “yucky,” and “gross.” You may have students who say things such as “I cannot get my clothes dirty. My mom will be mad.” Many students are fearful of bugs, wooded areas, and even just sitting on the grass. Often, after a few outdoor activities, these fears and excuses fade away. With patience, persistence, and support, students’ resistance may be overcome entirely. If you suspect that your students may be reluctant to work outdoors, structure your first few activities to be low-stress activities. The first few times outdoors can be fairly benign activities with students choosing a comfortable place to just sit (or stand), practicing writing outdoors, and doing simple collecting or counting tasks.

Set the tone. Many teaching strategies that are effective in the classroom work outdoors, too. For example, at the sharing circle, instead of instinctively talking louder (because it is noisy outdoors), kneel down and speak in a loud whisper so that students need to focus to hear you. If students are speaking, put up your silent signal, and wait for silence. The educator’s voice sets the tone for the activity.

Take a position. In the sharing circle, position yourself where you have the Sun in your face so that students don’t need to squint. If possible, place yourself next to those students who might benefit from a silent look or hand on the shoulder to remind them to be silent.

Meet the challenge. Students who struggle with behavior problems often respond well outdoors when given responsibility. Let the active student carry the heavy jug of water or take the position at the front of the line to lead the class outdoors. For many students, this is all it takes to get them off on the right foot for the outdoor activity.

Students who have the greatest difficulty controlling their behavior indoors are often the leaders when it comes to working in an outdoor space. You may find that students who are not as attentive or cannot sit still inside are the most insistent about quieting down so that the class can get outdoors for science.
Get them writing. Primary students (grades K–2) can fill out a chart on a clipboard outdoors. They are also capable of recording observations outdoors in their notebooks if observation is their only task. Most primary students will need to sit down with their clipboards on their laps or on the ground to do this successfully. In the early years, most writing follows an outdoor activity and is done inside on desks and with the classroom’s word wall.

Upper-elementary students (grades 3–6) are capable of writing outdoors. Students will benefit from a quick activity about how to place the notebook or clipboard in the crook of their nonwriting arm for support.

Depending on the activity, you might decide to have students attach their notebooks to a clipboard and place the clipboards in a crate for easy transport and storage. This technique is useful when the ground is moist, when the activity is messy, or when students need to use their hands to complete the activity. The recording will happen immediately after the hands-on activity. Be open to the surprise of how much your students are capable of noticing and recording during and after an outdoor activity.
FLOW OF OUTDOOR ACTIVITIES

The natural flow of a FOSS outdoor activity is slightly different from that of a standard FOSS indoor activity. The steps of a typical outdoor activity are listed below. This list may be helpful if you want to teach more than the handful of outdoor activities in the Investigations Guide, or if you want to adapt an indoor activity for schoolyard use.

1. **Prepare for the outdoor activity.**
 - Determine the best location to teach the activity.
 - Check the weather forecast.
 - Make sure students will be dressed appropriately.
 - Prepare materials for distribution.
 - Check the site the morning of the activity.

2. **Set the learning objective.**
 - Present the focus question.
 - Discuss procedures.

3. **Go outdoors.**
 - Gather at the predetermined location.

4. **Describe the activity.**
 - Organize students.
 - Define boundaries.
 - Introduce/distribute materials.

5. **Monitor the activity.**
 - Check student engagement.
 - Check student recording.
 - Ask questions.

6. **Share the experience.**
 - Form a sharing circle to discuss experiences.
 - Share thinking.
 - Share answers to the focus question.

7. **Return to class**
 - Make connections to the related indoor activity.
 - Display student work and collections.
EXTENDING BEYOND FOSS OUTDOOR ACTIVITIES

Occasionally, you may stumble upon a serendipitous opportunity. A breeze may launch thousands of twirling seeds from a maple tree, a woodpecker may alight on a tree so close that students can observe it drumming for insects, student-made parachutes may be carried by an updraft high into the sky and out of sight. To your delight, you may spy something you have never seen before. It can happen at any time when you are outdoors!

At special moments like these, our job as educators is to signal students to stop and quietly appreciate the suspension of time. Sometimes, words break the wonder. Trust your instincts at magical moments like these. The answers to questions will come eventually. It is not essential to label the event or even understand it. By inviting students to be alive with their feelings in the moment, you give them a gift for a lifetime.

It is not uncommon for educators to experience the powerful effect of the outdoors on student learning. If you find yourself searching for other outdoor learning opportunities, consider the ones below.

Move activities outdoors. Whatever the subject, students will have more room outdoors to be creative with some activities, and you can worry less about water, sand, and gravel spills. You must still consider how to transport materials, where students will sit, how they will return their project to the classroom, and how to clean up the outdoor space and students’ hands before returning to the building.

Use the outdoors for extensions. Extending an inside concept to the outdoors is an excellent way to apply new knowledge. For example, in the *Structures of Life Module*, students grow bush beans hydroponically. If the large leaves fascinate students, go outdoors and see how many kinds of leaves you can find in the schoolyard. Do they all have smooth edges and come to a point at their tips? Go on a leaf hunt, group the leaves by their characteristics, and, eventually, have students tape them into their science notebooks.

There is great value in repeating an indoor activity outdoors. If your students are sanding wood samples inside, follow this up with a trip outdoors to find a stick and sand it. Have you been studying sow bugs? Ask students if they think they know where in the schoolyard they might find these bugs. Applying what students have learned in the classroom and putting that knowledge to work outdoors is an effective way to solidify their understanding. It’s also an effective way to informally assess whether students understand the concepts, as well as a method for reinforcing the learning.
Find solitude. Use your outdoor space for silent independent work time. Just as in the classroom, the outdoor space can be a workspace with activities going on. At times, the outdoor space is more of a sanctuary for independent observation and notebook writing. It can be a place for special classroom rituals, awakening awareness of the beauty of nature. Sometimes, it can just be a place to be silent for a minute to awaken the senses and refocus students’ energy. Some teachers increase this silent minute to 2, 3, or even 5 minutes. Silence is something to be practiced, and for many students and teachers, this can be challenging. This is a special way to end an outdoor experience and will help students transition into the classroom.

Enhance biodiversity. Modify your schoolyard by adding natural materials, such as logs, rocks, or paving stones. These structures can provide safe havens that may attract more living things. These types of shelters can be particularly helpful if you have an environment without natural shelter from the Sun, such as trees and shrubs. Students can also be involved in the design and implementation of these projects.

Schoolyard modification of this kind requires administrative participation and the support of the school custodian. Marking the area with educational signage can further benefit the enhanced site. If your schoolyard habitat needs your intervention to cultivate biodiversity, understand that it can take a couple of years to get established. Areas completely surrounded by blacktop or concrete can become filled with living things if provided with food, shelter, and water.

Attract wildlife. There are many responsible ways to attract wildlife to your class windows with feeders for birds, squirrels, hummingbirds, or butterflies, as well as many great programs for monitoring these animals. See FOSSweb for ideas for additional wildlife observation projects.

Establish long-term studies. The possibilities for long-term studies are endless, ranging from weather monitoring to seasonal population variation. It can be as simple as adopting an observation location and visiting it monthly to monitor various aspects of change over time. See FOSSweb for ideas for long-term projects.

Create gardens. Planting a garden in raised beds or improved soil is an ambitious option for increasing the biodiversity of your schoolyard. Consider carefully, especially with a vegetable garden, the timing of the school year. In most parts of the country, the time when plants require the most support is during summer vacation. Even if you can get a summer program involved, we suggest starting with indigenous plants that bloom or mature in spring and fall and require little maintenance. Contact neighborhood gardening groups for assistance and volunteers.
ELEMENTARY-LEVEL ENVIRONMENTAL EDUCATION

In the early 1990s, David Sobel noticed something poignant about children's perceptions of the environment. If a child had been introduced to environmental issues at school that were presented in the context of doom-and-gloom scenarios, the child expressed a heightened sense of anxiety and hopelessness, which Sobel calls ecophobia (Sobel 1996). The implications of his finding should raise a cautionary flag. Sobel is not suggesting that we abandon teaching about the environment in our elementary schools. He is proposing a different approach to environmental education that will bring our children into natural, healthy relationships with environmental issues.

Effective early environmental education should focus on local and ultralocal issues. What is happening in our schoolyards? What factors influence the communities of plants and animals in our neighborhoods? How do changing weather conditions affect the populations around our schools? How are our actions affecting the habitats in our schoolyards? What can we do to enhance natural systems at our schools? Elaborate rain forest projects provide little understanding and have negligible impact on students’ connections to nature; researching and installing a butterfly garden or keeping an inventory of the birds in the schoolyard can be transformative. The children from Sobel's 1996 study could tell you how many species in the Amazon were going extinct each minute, but were unfamiliar with the most common plants in their schoolyard.

Time outdoors during the school day is beneficial for student learning. Students who are exposed to hands-on experiences in their local environment often become enthusiastic, self-motivated learners and, typically, academically outperform their peers who do not have these learning opportunities (Liebmann and Hoody 1998). Children are able to pay attention for longer periods of time outdoors on the same assignment and are more focused when they return to their indoor class work (Louv 2008).

Research has produced evidence that using the schoolyard is an effective way to enhance student learning. Texas A&M University, in conjunction with the Texas Education Agency, conducted a meta-analysis of the research in order to identify and rank effective instructional methods for science education and to define how best to improve student achievement. The highest-ranked teaching strategy was Enhanced Context Strategies, which included taking meaningful field trips and using the schoolyard for activities (Scott et al. 2005).
Students’ attitudes toward learning are influenced by simple outdoor experiences. In one study (Shaw and Terrance 1981), students who experienced outdoor instruction reported that, in general, they enjoyed school more and felt more supported and trusted by their teacher than they had prior to the outdoor experiences. These pretest/posttest differences were more pronounced for students who had been identified as being “uninvolved” in the classroom activities. Also, this student perception was a lasting effect that carried over to the regular classroom activities weeks later.

Perhaps the most important benefit of incorporating the outdoors into the traditional school learning environment is that it offers opportunities for students to synthesize concepts and personal experience by applying what they have learned to a new environment.

FOSS outdoor activities will help you focus on age-appropriate environmental topics and enable you to create meaningful and personal connections between your students and their local environment. When students can openly explore the environment, they can create meaningful connections to their learning and establish positive relationships with nature. You’ll be amazed by what students notice.

In 2010, Kevin Coyle of the National Wildlife Federation (NWF) reported that the average American child spends 7 hours and 38 minutes per day indoors using electronic media (almost 12 hours for children ages 11-14) while only having a few minutes of unstructured play time daily in an outdoor setting. These statistics are alarming. At FOSS, we truly hope, that getting students outdoors regularly to explore science concepts in their schoolyard or in a nearby outdoor setting will help foster a desire to shut off the TV or computer and to get outside to embrace the natural world on their own time.

Here’s the good news. If you focus on inquiry and direct experience instead of problems, it takes remarkably little guidance for students to make positive, empowering, lifelong connections to nature. One insightful young man explained, “My video games have a pattern that is always the same, but nature is like a game that is different every time you play.” As an educator, you can draw out that sense of wonder and curiosity for students while simultaneously helping them build a solid science foundation.
REFERENCES

ACKNOWLEDGMENTS

The Taking FOSS Outdoors initiative got its start through a collaboration with the Boston Schoolyard Initiative (BSI). In 2004, BSI began developing an approach to teaching science that routinely takes students into the schoolyard to test, apply, and explore core science concepts and skills. As part of this project, BSI developed *Science in the Schoolyard Guides™* for 12 FOSS modules and a companion *Science in the Schoolyard™* video. In partnership with the City of Boston, BSI designs and builds schoolyards that provide a rich environment for teaching, learning, and play. Many of the behavior management strategies listed here were gleaned from expert Boston Public School teachers. We thank each of them for their contributions to this initiative and hope they know that the ripples of their work extend far beyond the city limits of Boston, MA to reach students across the country and throughout the world.

For more information on BSI, *Science in the Schoolyard*, or BSI’s *Outdoor Writer’s Workshop™* professional development program and materials, see www.schoolyards.org.

The video, *Science in the Schoolyard™* can be viewed on FOSSweb in Teaching Tools, Taking FOSS Outdoors.