INTRODUCTION

The Full Option Science System™ has evolved from a philosophy of teaching and learning at the Lawrence Hall of Science that has guided the development of successful active-learning science curricula for more than 40 years. The FOSS Program bridges research and practice by providing tools and strategies to engage students and teachers in enduring experiences that lead to deeper understanding of the natural and designed worlds.

Science is a creative and analytic enterprise, made active by our human capacity to think. Scientific knowledge advances when scientists observe objects and events, think about how they relate to what is known, test their ideas in logical ways, and generate explanations that integrate the new information into understanding of the natural world. Engineers apply that understanding to solve real-world problems. Thus the scientific enterprise is both what we know (content knowledge) and how we come to know it (practices). Science is a discovery activity, a process for producing new knowledge.

The best way for students to appreciate the scientific enterprise, learn important scientific and engineering concepts, and develop the ability to think well is to actively participate in scientific practices through their own investigations and analyses. FOSS was created to engage students and teachers with meaningful experiences in the natural and designed worlds.
GOALS OF THE FOSS PROGRAM

FOSS has set out to achieve three important goals: scientific literacy, instructional efficiency, and systemic reform.

Scientific Literacy

FOSS provides all students with science experiences that are appropriate to students’ cognitive development and prior experiences. It provides a foundation for more advanced understanding of core science ideas that are organized in thoughtfully designed learning progressions and prepares students for life in an increasingly complex scientific and technological world.

The National Research Council (NRC) in *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas* and the American Association for the Advancement of Science (AAAS) in *Benchmarks for Scientific Literacy* have described the characteristics of scientific literacy:

- Familiarity with the natural world, its diversity, and its interdependence.
- Understanding the disciplinary core ideas and the crosscutting concepts of science, such as patterns; cause and effect; scale, proportion, and quantity; systems and system models; energy and matter—flows, cycles, and conservation; structure and function; and stability and change.
- Knowing that science and engineering, technology, and mathematics are interdependent human enterprises and, as such, have implied strengths and limitations.
- Ability to reason scientifically.
- Using scientific knowledge and scientific and engineering practices for personal and social purposes.

The FOSS Program design is based on learning progressions that provide students with opportunities to investigate core ideas in science in increasingly complex ways over time. FOSS starts with the intuitive ideas that primary students bring with them and provides experiences that allow students to develop more sophisticated understanding as they grow through the grades. Cognitive research tells us that learning involves individuals in actively constructing schemata to organize new information and to relate and incorporate the new understanding into established knowledge. What sets experts apart from novices is that
experts in a discipline have extensive knowledge that is effectively organized into structured schemata to promote thinking. Novices have disconnected ideas about a topic that are difficult to retrieve and use. Through internal processes to establish schemata and through social processes of interacting with peers and adults, students construct understanding of the natural world and their relationship to it.

The target goal for FOSS students is to know and use scientific explanations of the natural world and the designed world; to understand the nature and development of scientific knowledge and technological capabilities; and to participate productively in scientific and engineering practices.

Instructional Efficiency

FOSS provides all teachers with a complete, cohesive, flexible, easy-to-use science program that reflects current research on teaching and learning, including student discourse, argumentation, writing to learn, and reflective thinking, as well as teacher use of formative assessment to guide instruction. The FOSS Program uses effective instructional methodologies, including active learning, scientific practices, focus questions to guide inquiry, working in collaborative groups, multisensory strategies, integration of literacy, appropriate use of digital technologies, and making connections to students' lives.

FOSS is designed to make active learning in science engaging for teachers as well as for students. It includes these supports for teachers:

- Complete equipment kits with durable, well-designed materials for all students.
- Detailed *Investigations Guide* with science background for the teacher and focus questions to guide instructional practice and student thinking.
- Multiple strategies for formative assessment.
- Benchmark assessments with scoring guides.
- Strategies for use of science notebooks for novice and experienced users.
- *FOSS Science Resources*, a book of course-specific readings.
- The FOSS website with course-integrated online activities for use in school or at home, suggested extension activities, and extensive online support for teachers.
Systemic Reform
FOSS provides schools and school systems with a program that addresses the community science-achievement standards. The FOSS Program prepares students by helping them acquire the knowledge and thinking capacity appropriate for world citizens.

The FOSS Program design makes it appropriate for reform efforts on all scales. It reflects the core ideas to be incorporated into the next-generation science standards. It meets with the approval of science and technology companies working in collaboration with school systems, and it has demonstrated its effectiveness with diverse student and teacher populations in major urban reform efforts. The use of science notebooks and formative-assessment strategies in FOSS redefines the role of science in a school—the way that teachers engage in science teaching with one another as professionals and with students as learners, and the way that students engage in science learning with the teacher and with one another. FOSS takes students and teachers beyond the classroom walls to establish larger communities of learners.
BRIDGING RESEARCH INTO PRACTICE

The FOSS Program is built on the assumptions that understanding core scientific knowledge and how science functions is essential for citizenship, that all teachers can teach science, and that all students can learn science. The guiding principles of the FOSS design, described below, are derived from research and confirmed through FOSS developers’ extensive experience with teachers and students in typical American classrooms.

Understanding of science develops over time. FOSS has elaborated learning or content progressions for core ideas in science for kindergarten through grade 8. Developing the learning progressions involves identifying successively more sophisticated ways of thinking about core ideas over multiple years. “If mastery of a core idea in a science discipline is the ultimate educational destination, then well-designed learning progressions provide a map of the routes that can be taken to reach that destination” (National Research Council, A Framework for K–12 Science Education, 2011).

Focusing on a limited number of topics in science avoids shallow coverage and provides more time to explore core science ideas in depth. Research emphasizes that fewer topics experienced in greater depth produces much better learning than many topics briefly visited. FOSS affirms this research. FOSS courses provide long-term engagement (10–12 weeks) with important science ideas. Furthermore, courses build upon one another within and across each strand, progressively moving students toward the grand ideas of science. The core ideas of science are difficult and complex, never learned in one lesson or in one class year.
Science is more than a body of knowledge. How well you think is often more important than how much you know. In addition to the science content framework, every FOSS course provides opportunities for students to engage in and understand scientific practices, and many courses explore issues related to engineering practices and the use of natural resources. FOSS uses these scientific and engineering practices.

- Asking questions (for science) and defining problems (for engineering)
- Planning and carrying out investigations
- Analyzing and interpreting data
- Developing and using models
- Using mathematics, information and computer technology, and computational thinking
- Constructing explanations (for science) and designing solutions (for engineering)
- Engaging in argument from evidence
- Obtaining, evaluating, and communicating information

Science is inherently interesting, and children are natural investigators. It is widely accepted that children learn science concepts best by doing science. Doing science means hands-on experiences with objects, organisms, and systems. Hands-on activities are motivating for students, and they stimulate inquiry and curiosity. For these reasons, FOSS is committed to providing the best possible materials and the most effective procedures for deeply engaging students with scientific concepts. FOSS students at all grade levels investigate, experiment, gather data, organize results, and draw conclusions based on their own actions. The information gathered in such activities enhances the development of scientific and engineering practices.

Education is an adventure in self-discovery. Science provides the opportunity to connect to students’ interests and experiences. Prior experiences and individual learning styles are important considerations for developing understanding. Observing is often equated with seeing, but in the FOSS Program all senses are used to promote greater understanding. FOSS evolved from pioneering work done in the 1970s with students with disabilities. The legacy of that work is that FOSS investigations naturally use multisensory methods to accommodate students with physical and learning disabilities and also to maximize information gathering for all students. A number of tools, such as the FOSS syringe and balance, were originally designed to serve the needs of students with disabilities.
Formative assessment is a powerful tool to promote learning and can change the culture of the learning environment. Formative assessment in FOSS creates a community of reflective practice. Teachers and students make up the community and establish norms of mutual support, trust, respect, and collaboration. The goal of the community is that everyone will demonstrate progress and will learn and grow.

Science-centered language development promotes learning in all areas. Effective use of science notebooks can promote reflective thinking and contribute to lifelong learning. Research has shown that when language-arts experiences are embedded within the context of learning science, students improve in their ability to use their language skills. Students are motivated to read to find out information, and to share their experiences both verbally and in writing.

Experiences out of the classroom develop awareness of community. By extending classroom learning into the local region and community, FOSS brings the science concepts and principles to life. In the process of extending classroom learning to the natural world and utilizing community resources, students will develop a relationship with learning that extends beyond the classroom walls.
FOSS MIDDLE SCHOOL COMPONENTS

Teacher Toolkit
The Teacher Toolkit is the most important part of the FOSS Program. It is here that all the wisdom and experience contributed by hundreds of educators has been assembled. Everything we know about the content of the course and how to teach the subject in a middle school classroom is presented, along with the resources that will assist the effort. Each middle school Teacher Toolkit has three parts.

Investigations Guide. This three-ring binder contains these chapters.

- Overview
- Materials
- Investigations

Teacher Resources. This three-ring binder contains these chapters.

- FOSS Middle School Introduction
- Assessment
- Science Notebooks in Middle School
- FOSSweb and Technology
- Science Notebook Masters
- Teacher Masters
- Assessment Masters
- Notebook Answers

The chapters contained in Teacher Resources can also be found on FOSSweb (www.FOSSweb.com) and on the CD included in the Teacher Toolkit.

FOSS Science Resources book. One copy of the student book of readings, images, and data is included for the teacher.

Equipment Kit
The FOSS Program provides the materials needed for the investigations in sturdy, front-opening drawer-and-sleeve cabinets. Inside, you will find high-quality materials packaged for a class of 32 students. Consumable materials are supplied for five sequential uses (five periods in one day) before you need to restock. You will be asked to supply small quantities of common classroom items.
FOSS Science Resources Books

FOSS Science Resources is a book of original readings developed to accompany each course, along with images and data to analyze during investigations. The readings are referred to as articles in the Investigations Guide. Students read the articles in the book as they progress through the course, sometimes during class and sometimes as homework. The articles cover a specific concept usually after that concept has been introduced in an active investigation.

The articles in FOSS Science Resources and the discussion questions in the Investigations Guide help students make connections to the science concepts introduced and explored during the active investigations. Concept development is most effective when students are allowed to experience organisms, objects, and phenomena firsthand before engaging the concepts in text. The text and illustrations help make connections between what students experience concretely and the ideas that explain their observations.

FOSSweb and Technology

The FOSS website opens new horizons for educators, students, and families, in the classroom or at home. Each course has an interactive site where students can find instructional activities, interactive simulations, virtual investigations, and other resources. FOSSweb provides resources for professional development, materials management, general teaching tools for FOSS, purchasing links, contact information for the FOSS Program, and technical support. You do not need an account to view this general FOSS Program information. In addition to the general information, FOSSweb provides digital access to PDF versions of the Teacher Resources component of the Teacher Toolkit and digital-only resources that supplement the print and kit materials.

Additional resources are available to support FOSS teachers. With an educator account, you can set up a customized homepage that will provide easy access to the digital components of the courses you teach, and allow you to create class pages for your students.

Ongoing Professional Development

The Lawrence Hall of Science and Delta Education are committed to supporting science educators with unrivaled teacher support, high-quality implementation, and continuous staff-development opportunities and resources. FOSS has a strong network of consultants who have rich and experienced backgrounds in diverse educational settings using FOSS. Find out about professional-development opportunities on FOSSweb.
FOSS INSTRUCTIONAL DESIGN

Each FOSS investigation follows a similar cycle to provide multiple exposures to science concepts. The cycle includes these pedagogies.

- Active investigation, including outdoor experiences and online simulations
- Recording in science notebooks to answer the focus question
- Reading in FOSS Science Resources
- Assessment to monitor progress and motivate student reflection on learning

In practice, these components are seamlessly integrated into a continuum designed to maximize every student’s opportunity to learn. An instructional sequence may move from one pedagogy to another and back again to ensure adequate coverage of a concept.

Investigation Organization

Courses are subdivided into investigations. Investigations are further subdivided into two to four parts. Each part of each investigation is driven by a focus question. The focus question, presented as the part begins, signals the challenge to be met, mystery to be solved, or principle to be uncovered. The focus question guides students’ inquiry and makes the goal of each part explicit for teachers. Each part concludes with students preparing a written answer to the focus question in their notebooks.

Investigation-specific scientific and historical background information for the teacher is presented in each investigation chapter. The content discussion is divided into sections, each of which relates directly to one of the focus questions. This facilitates finding the exact information you need for each part of the investigation.

The Getting Ready and Guiding the Investigation sections have several features that are flagged or presented in the sidebar. These include several icons to remind you when a particular pedagogical method is suggested, as well as concise bits of information in several categories.

Teaching notes appear in blue boxes in the sidebar. An arrow points to the place in the lesson where the note applies. These notes constitute a second voice in the curriculum—an educative element. The first (traditional) voice is the message you deliver to students. It supports your work teaching students at all levels, from management to inquiry. The second educative voice is designed to help you understand the science content and pedagogical reasoning at work behind the instructional scene.

FOCUS QUESTION

What causes Moon phases?
The small-group **discussion** icon asks you to pause while students discuss data or construct explanations in their groups. Often a Reporter shares the group’s conclusions with the class.

The **vocabulary** icon indicates where students should record vocabulary in their science notebooks, often just before preparing for a benchmark assessment.

The **recording** icon points out where students should make a science notebook entry. Students can record on prepared notebook sheets or on plain sheets in a bound notebook.

The **engineering** icon indicates opportunities for addressing engineering practices—applying and using scientific knowledge. These opportunities include developing a solution to a problem, constructing and evaluating models, and using systems thinking.

The **reading** icon signals when the class should read a specific article or refer to data in *FOSS Science Resources*. Some readings are critical to instruction and should take place in class. A reading guide is provided for each such reading.

The **safety** icon alerts you to a potential safety issue. It could relate to the use of a chemical substance, such as salt, requiring safety goggles, or the possibility of an allergic reaction when an investigation might expose the students to latex, legumes, or wheat.

The **assessment** icon appears when there is an opportunity to assess student progress or performance. The assessment is usually one of three kinds: observation of students engaged in scientific and engineering practices, review of a notebook entry, or review of students’ work on a prepared assessment tool.

The **technology** icon indicates when to have one or more computers available for accessing FOSSweb to use the online resources. The online activities are not optional.

The **homework** icon indicates science learning experiences that extend beyond the classroom. Some of the readings are suggested as homework. In that case, you will see two icons by that step.

The **outdoor** icon indicates science learning experiences that extend into the schoolyard.

To help with scheduling, you will see icons for **breakpoints**. Some breakpoints are essential, and others are optional.
Active Investigation

Active investigation is a master pedagogy. Embedded within active learning are a number of pedagogical elements and practices that keep active investigation vigorous and productive. The enterprise of active investigation includes

- context: questioning and planning;
- activity: doing and observing;
- data management: recording, organizing, and processing; and
- analysis: discussing and writing explanations.

Context: questioning and planning. Active investigation requires focus. The context of an inquiry can be established with a focus question or challenge from you or, in some cases, from students. At other times, students are asked to plan a method for investigation. This might start with a teacher demonstration or presentation. Then you challenge students to plan an investigation. In either case, the field available for thought and interaction is constrained. This clarification of context and purpose results in a more productive investigation.

Activity: doing and observing. In the practice of science, scientists put things together and take things apart, they observe systems and interactions, and they conduct experiments. This is the core of science—active, firsthand experience with objects, organisms, materials, and systems in the natural world and designed worlds. In FOSS, students engage in the same processes. Students often conduct investigations in collaborative groups of four, with each student taking a role to contribute to the effort.

The active investigations in FOSS are cohesive, and build on each other and the readings to lead students to a comprehensive understanding of concepts. Through the investigations, students gather meaningful data. Online multimedia activities throughout the course provide students with the opportunity to collect data, manipulate variables, and explore models and simulations beyond what can be done in the classroom. Seamless integration of the multimedia forms an integral part of students’ active investigations in FOSS.

Data management: recording, organizing, and processing. Data accrue from observation, both direct (through the senses) and indirect (mediated by instrumentation). Data are the raw material from which scientific knowledge and meaning are synthesized. During and after work with materials, students record data in their notebooks. Data recording is the first of several kinds of student writing.
Students then organize data so that they will be easier to think about. Tables allow efficient comparison. Organizing data in a sequence (time) or series (physical property) can reveal patterns. Students process some data into graphs, providing visual display of numerical data. They also organize data and process them in the science notebook.

Analysis: discussing and writing explanations. The most important part of an active investigation is extracting its meaning. This constructive process involves logic, discourse, and existing knowledge. Students share their explanations for phenomena, using evidence generated during the investigation to support their ideas. They conclude the active investigation by writing a summary of their learning in their science notebooks as well as questions raised during the activity.

Science Notebooks

Research and best practice have led FOSS to place more emphasis on the student science notebook. Keeping a notebook helps students organize their observations and data, process their data, and maintain a record of their learning for future reference. The process of writing about their science experiences and communicating their thinking is a powerful learning device for students. And the student notebook entries stand as a credible and useful expression of learning. The artifacts in the notebooks form one of the core elements of the assessment system.

You will find the duplication masters for middle school presented in a notebook format. They are reduced in size (two copies to a standard sheet) for placement (glue or tape) in a bound composition book. Student work is entered partly in spaces provided on the notebook sheets and partly on adjacent blank sheets. Full-size duplication masters are also available on FOSSweb for projection.

TEACHING NOTE

The Science Notebooks in Middle School chapter includes guidance on how to structure a student-centered notebook in terms of organization, content, and classroom logistics. Reading that chapter will help you consider your instructional practices for notebooks and incorporate new techniques supported by research about student learning.
Reading in FOSS Science Resources
Reading is a vital component of the FOSS Program. Reading enhances and extends information and concepts acquired through active investigation.

Some readings can be assigned as homework or extension activities, whereas other readings have been deemed important for all students to complete with a teacher’s support in class.

Each in-class reading has a reading guide embedded in the Guiding the Investigation section. The reading guide suggests breakpoints with questions to help students connect the reading to their experiences from class, and recommends notebook entries. Additionally, each of these readings includes one or more prompts that ask students to make additional notebook entries. These prompts should help students who missed the in-class reading to process the article in a meaningful way. Some of the most essential articles are provided as notebook masters. Students can highlight the article as they read, add notes or questions, and add the article to their science notebooks.

Assessing Progress
The FOSS assessment system includes both formative and summative assessments. Formative assessment monitors learning during instruction. It measures progress, provides information about learning, and is generally diagnostic. Summative assessment looks at the learning after instruction is completed, and it measures achievement.

Formative assessment in FOSS, called embedded assessment, occurs on a daily basis. You observe action during class or review notebooks after class. Embedded assessment provides continuous monitoring of students’ learning and helps you make decisions about whether to review, extend, or move on to the next idea to be covered.

Benchmark assessments are short summative assessments given after one or two investigations. These I-Checks are actually hybrid tools: they provide summative information about students’ achievement, and because they occur soon after teaching an investigation, they can be used diagnostically as well. Reviewing a specific item on an I-Check with the class provides another opportunity for students to clarify their thinking.
FOSSweb and Technology

FOSS is committed to providing a rich, accessible technology experience for all FOSS users. FOSSweb is the Internet access to FOSS digital resources. It provides enrichment for students and support for teachers, administrators, and families who are actively involved in implementing and enjoying FOSS materials.

Technology to Engage Students at School and at Home

Online multimedia activities. These include models, simulations, and activities that extend the active investigations.

Class pages. Teachers with a FOSSweb account can set up class pages with notes and assignments for students and families to access online.

Recommended books and websites. FOSS has reviewed print books and digital resources that are appropriate for students and prepared a list of these media resources.

FOSS Science Resources. As premium content, FOSS Science Resources is available as an eBook.

Technology to Support Teachers

Investigations eGuide. The eGuide is the complete Investigations Guide component of the Teacher Toolkit in an electronic web-based format, allowing access from any Internet-enabled computer.

Resources by investigation. This digital listing provides online links to notebook sheets, assessment and teacher masters, and online activities for each investigation of a course, for projection in the classroom.

Science-notebook masters and teacher masters. All notebook masters and teacher masters used in the courses are available digitally on FOSSweb for downloading and for projection during class.

Assessment masters. The benchmark assessment masters (I-Checks and Survey/Posttest) are available through FOSSweb.

Materials Safety Data Sheets (MSDS). These sheets have information from materials manufacturers on handling and disposal of materials.

Course summary. The summary describes each investigation in a course, including major concepts developed.

Course updates and course notes. These are updates related to the teacher materials, student equipment, and safety guidelines.

Teacher Resources chapters. FOSSweb provides PDF files of the chapters in the Teacher Resources binder.
FOSS K–8 SCOPE AND SEQUENCE

<table>
<thead>
<tr>
<th>Grade</th>
<th>Physical Science</th>
<th>Earth Science</th>
<th>Life Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–8</td>
<td>Electronics</td>
<td>Planetary Science</td>
<td>Human Brain and Senses</td>
</tr>
<tr>
<td></td>
<td>Chemical Interactions</td>
<td>Earth History</td>
<td>Populations and Ecosystems</td>
</tr>
<tr>
<td></td>
<td>Force and Motion</td>
<td>Weather and Water</td>
<td>Diversity of Life</td>
</tr>
<tr>
<td>4–6</td>
<td>Mixtures and Solutions</td>
<td>Weather on Earth</td>
<td>Living Systems</td>
</tr>
<tr>
<td></td>
<td>Motion, Force, and Models</td>
<td>Sun, Moon, and Planets</td>
<td>Environments</td>
</tr>
<tr>
<td></td>
<td>Energy and Electromagnetism</td>
<td>Soils, Rocks, and Landforms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Measuring Matter</td>
<td>Water</td>
<td>Structures of Life</td>
</tr>
<tr>
<td>1–2</td>
<td>Balance and Motion</td>
<td>Air and Weather</td>
<td>Insects and Plants</td>
</tr>
<tr>
<td></td>
<td>Solids and Liquids</td>
<td>Pebbles, Sand, and Silt</td>
<td>Plants and Animals</td>
</tr>
<tr>
<td>K</td>
<td>Materials in Our World</td>
<td>Trees and Weather</td>
<td>Animals Two by Two</td>
</tr>
</tbody>
</table>

FOSS is a research-based science curriculum for grades K–8 developed at the Lawrence Hall of Science, University of California, Berkeley. FOSS is also an ongoing research project dedicated to improving the learning and teaching of science. The FOSS project began over 25 years ago during a time of growing concern that our nation was not providing young students with an adequate science education. The FOSS Program materials are designed to meet the challenge of providing meaningful science education for all students in diverse American classrooms and to prepare them for life in the 21st century. Development of the FOSS Program was, and continues to be, guided by advances in the understanding of how people think and learn.

With the initial support of the National Science Foundation and continued support from the University of California, Berkeley, and School Specialty, Inc., the FOSS Program has evolved into a curriculum for all students and their teachers, grades K–8. The current editions of FOSS are the result of a rich collaboration among the FOSS/Lawrence Hall of Science development staff; the FOSS product development team at Delta Education; assessment specialists, educational researchers, and scientists; and dedicated professionals in the classroom and their students, administrators, and families.

We acknowledge the thousands of FOSS educators who have embraced the notion that science is an active process, and we thank them for their significant contributions to the development and implementation of the FOSS Program.