INTRODUCTION

Uncovering the body of scientific knowledge, the development of the vast array of designed products, and the associated intellectual activities are the work of scientists and engineers. Students, in their pursuit of core scientific knowledge, engage in similar work. The intellectual activities (science and engineering practices) represent one dimension of the Next Generation Science Standards (NGSS). Some of these practices are innately natural for students as they observe and tinker with the world around them. Others may be alien at first, but with support and guidance from teachers, will become part of the way students think and work in science.

Engaging in the practices of science helps students understand how scientific knowledge develops; such direct involvement gives them an appreciation of the wide range of approaches that are used to investigate, model, and explain the world. Engaging in the practices of engineering likewise helps students understand the work of engineers, as well as the links between engineering and science. Participation in these practices also helps students form an understanding of the crosscutting concepts and disciplinary ideas of science and engineering; moreover, it makes students’ knowledge more meaningful and embeds it more deeply into their worldview.

The actual doing of science or engineering can also pique students’ curiosity, capture their interest, and motivate their continued study (A Framework for K–12 Science Education, 2012, page 42).
Science and Engineering Practices—Grade 2

Science and Engineering Practices

There are eight practices described in *A Framework for K–12 Science Education*. The practices are the same for K–2, but the capabilities form a learning progression described in grade bands—K–2, 3–5, 6–8, and 9–12. Below are the capabilities for the grades K–2 grade band. Those in bold are emphasized in second grade based on the NGSS performance expectations.

1. **Asking questions and defining problems**
 - Ask questions based on observations to find more information about the natural and/or designed world(s).
 - Ask and/or identify questions that can be answered by an investigation.
 - Define a simple problem that can be solved through the development of a new or improved object or tool.

2. **Developing and using models**
 - Distinguish between a model and the actual object, process, and/or events the model represents.
 - Compare models to identify common features and differences.
 - Develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s).
 - Develop a simple model based on evidence to represent a proposed object or tool.

3. **Planning and carrying out investigations**
 - With guidance, plan and conduct an investigation in collaboration with peers (for K).
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
 - Evaluate different ways of observing and/or measuring a phenomenon to determine which way can answer a question.
 - Make observations (firsthand or from media) and/or measurements to collect data that can be used to make comparisons.
 - Make observations (firsthand or from media) and/or measurements of a proposed object or tool or solution to determine if it solves a problem or meets a goal.
 - Make predictions based on prior experiences.
4. **Analyzing and interpreting data**
 - Record information (observations, thoughts, and ideas).
 - Use and share pictures, drawings, and/or writings of observations.
 - Use observations (firsthand or from media) to describe patterns and/or relationships in the natural and designed world(s) in order to answer scientific questions and solve problems.
 - Compare predictions (based on prior experiences) to what occurred (observable events).
 - Analyze data from tests of an object or tool to determine if it works as intended.

5. **Using mathematics and computational thinking**
 - Decide when to use qualitative vs. quantitative data.
 - Use counting and numbers to identify and describe patterns in the natural and designed world(s).
 - Describe, measure, and/or compare quantitative attributes of different objects and display the data using simple graphs.
 - Use quantitative data to compare two alternative solutions to a problem.

6. **Constructing explanations and designing solutions**
 - Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
 - Use tools and/or materials to design and/or build a device that solves a specific problem or a solution to a specific problem.
 - Generate and/or compare multiple solutions to a problem.

7. **Engaging in argument from evidence**
 - Identify arguments that are supported by evidence.
 - Distinguish between explanations that account for all gathered evidence and those that do not.
 - Analyze why some evidence is relevant to a scientific question and some is not.
 - Distinguish between opinions and evidence in one’s own explanations.
 - Listen actively to arguments to indicate agreement or disagreement based on evidence, and/or to retell the main points of the argument.

REFERENCES

Science and Engineering Practices—Grade 2

- Construct an argument with evidence to support a claim.
- Make a claim about the effectiveness of an object, tool, or solution that is supported by relevant evidence.

8. Obtaining, evaluating, and communicating information

- Read grade-appropriate texts and/or use media to obtain scientific and/or technical information to determine patterns in and/or evidence about the natural and designed world(s).
- Describe how specific images (e.g., a diagram showing how a machine works) support a scientific or engineering idea.
- Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question and/or supporting a scientific claim.
- Communicate information or design ideas and/or solutions with others in oral and/or written forms using models, drawings, writing, or numbers that provide detail about scientific ideas, practices, and/or design ideas.

While these are presented in this order, the Framework issues a word of caution.

In doing science or engineering, the practices are used iteratively and in combination; they should not be seen as a linear sequence of steps to be taken in the order presented (A Framework for K–12 Science Education, 2012, page 49).

Science and Engineering Practices in FOSS Investigations

One goal of the FOSS Program is scientific literacy for all students. This means more than just knowledge of core ideas. Scientific literacy includes engaging in the activities and intellectual behaviors of scientists and engineers. Written into each investigation are specific steps that aim to build student competence with each practice. Over the course of the year, the expectation is for all students to have multiple experiences with the practices. Student capabilities with each practice should advance as the year progresses. Teachers will need to purposefully plan instructional opportunities in order to advance these capabilities.
Throughout the *Investigations Guide* you will see specific practices called out in the sidebar next to a step. The table “Science and Engineering Practices Opportunities in FOSS” at the end of this chapter is the complete list. In some cases, you will also see a Teaching Note (see sidebar) instructing you to look at a specific section of this chapter to engage students in that practice. These grade-level examples for practices that are described in this chapter are shown in the table below.

For example, a strategy called “put in your two cents” can be used for developing an argument to determine whether or not worms are good for soil. In other cases, the teacher will need to decide how best to advance student capabilities throughout the year. This can be through a series of questions and frames or through mini-lessons suggested in this chapter. Prior experiences, amount of time, and complexity of the investigation factor into these decisions. At times, a deep dive into constructing explanations is a reasonable endeavor, other times, introducing a data collection tool is appropriate. The driving idea is for teachers to make purposeful decisions about when and how to engage students so their skills within each practice grows over the year.

Grade-level examples for practices described in this chapter.

<table>
<thead>
<tr>
<th>SEP Focus</th>
<th>Pebbles, Sand, and Silt Module</th>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking questions and defining problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing and using models</td>
<td>Inv. 2, Part 4, Step 26: Discuss video demonstration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning and carrying out investigations</td>
<td>Inv. 2, Part 2, Step 16: Discuss a plant experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzing and interpreting data</td>
<td>Inv. 2, Part 2, Steps 4–5: Model recording in notebooks</td>
<td>Inv. 2, Part 2, Step 16: Discuss a plant experiment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv. 3, Part 3, Step 2: Discuss molting</td>
<td>Inv. 2, Part 2, Steps 8–13: Observe segments</td>
<td>Inv. 5, Part 1, Step 6: Introduce the class notebook</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions</td>
<td>Inv. 3, Part 5, Steps 6–8: Form a sharing circle</td>
<td>Inv. 2, Part 3, Step 17: Read “Liquids”</td>
<td>Inv. 2, Part 3, Step 17: Have a sense-making discussion</td>
</tr>
<tr>
<td>Engaging in argument from evidence</td>
<td>Inv. 1, Part 3, Step 17: Share notebook entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information</td>
<td>Inv. 2, Part 3, Step 17: Read “Liquids”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supporting Student Engagement with Practices

In order to support students with the practices, teachers will want to utilize a combination of instructional strategies. Listed below are general strategies that can be used for any practice. Strategies for specific science and engineering practices are shared in the following sections.

Questions, frames, and prompts. Questions can focus student attention on a specific practice. Ideally, these questions should probe for students to communicate their thinking about one practice at a time to maintain focus. The teacher can provide frames and prompts for students to communicate and organize their thinking. Specific questions, frames, and prompts are provided for each practice in the corresponding sections.

Teacher think-aloud. The teacher can model the path an expert takes with a specific practice by verbalizing or modeling the thinking process. This is especially important for younger students they are just starting to work with the practices. For example, “When I think about planning an investigation, I think about which step I should take first and write that down or draw a picture of what I am doing. Next, I need to ______.” Or use statements, such as “What Roy just said makes me think I should try to find one more piece of evidence. I should include more evidence to make my argument stronger.” Modeling shows students what the expectations are, and helps them understand the structure and scope of each practice.

Critique teacher-generated examples. The teacher can provide a partially developed example or use of the practice, such as a procedure that is out of order or a drawing of a tree that is missing leaves.
WORKING WITH PRACTICES

Asking Questions (Science) and Defining Problems (Engineering)

Asking questions is essential to developing scientific habits of mind. Even for individuals who do not become scientists or engineers, the ability to ask well-defined questions is an important component of science literacy, helping to make them critical consumers of scientific knowledge (A Framework for K–12 Science Education, 2012, page 54).

As students engage with phenomenon through active investigation, they should begin to ask questions. Second grade students ask lots of questions when they work with new materials. These initial questions may not be questions that will lead to uncovering essential truths about the natural world and often need to be refined. Student actions as they work with materials are usually cause-and-effect questions, such as “What happens when I give the ball a big push?” Students might need guidance to connect these actions with questions that can be investigated. For example, when students are testing how far a ball will roll, the teacher might say, “It looks like you are rolling the ball from different places on the ramp and seeing how far it goes. You are trying to find out where the ball rolls the farthest.” Other questions, such as “Why is the ball red?” are not ones students can answer through investigation. Students should engage with probing questions to come to understand the nature of meaningful questions; the systematic process of seeking and acquiring answers. Additionally, new questions should arise as a result of observing during investigations, continuing the process. Questions about phenomena, such as balls rolling down ramps, will increase in complexity as student knowledge of a subject increases.

When students begin to confront engineering challenges, they need to define the problem they need to solve. As they design, construct, test, and redesign, they often might have new problems they need to solve. Defining both the overarching problem as well as those problems that arise along the pathway toward a solution are important for students to recognize and communicate during their work.

Working with students asking questions and defining problems.

Asking questions and defining problems can occur at any time. In the Investigations Guide there are specific steps where teachers can probe for student questions. These should not be viewed as the only opportunities for students to ask questions.

A big step in a teacher’s practice is the ability to recognize student questions about their learning and help them clarify questions about their own understanding. It is not the teacher’s job to answer all

Science and Engineering Practices—Grade 2
of those questions. Second graders have had some experience in earlier grades with asking questions but still need guidance in asking answerable questions. When students ask questions, the teacher sorts those questions (in their head) into four categories and then takes appropriate action.

1. **Questions that are reasonable for students to investigate, even if they need some refining.** Suggestions for helping students reword or focus these questions are provided below.

2. **Questions that can be answered by information acquisition through readings, or other sources.** For suggestions to help students obtain information through other sources, see the section in this chapter on obtaining, evaluating, and communicating information.

3. **Questions that can be answered by thinking and analysis of available information during a sense-making discussion.** Suggestions for working with questions can be found in the Sense-Making Discussions for Three-Dimensional Learning.

4. **Questions that are fanciful or developmentally out of the cognitive range of students.** For the latter, teachers should aim to keep the curiosity of students intact but not feel compelled to pursue the question. A simple, “So you are wondering <student’s question>,” I’m curious about that too,” works reasonably well.

Example in Grade 2

Ask questions based on observations to find more information about the natural and/or designed world(s). In the *Insects and Plants Module*, Investigation 2, Part 2, students have observed the early growth of brassica plants. In this example, the teacher wants to support students in asking questions as this is her first module in the year. The teacher uses an instructional strategy to help students ask questions about their observations. The teacher asks students what is something they observed about the baby plants. For example, some of them have a few leaves while some do not. Taking this observation, the teacher can rephrase this as a question, such as, “Do all brassica plants have the same number of leaves?” After recording this question on the board or in a class notebook, students can share other observations. After the teacher rephrases these as questions, the teachers makes an observation, such as, “I saw a few plants that were taller than others. What is a good question we can ask?” Students can rephrase the teacher’s observation as a question. Later in the module, students are asked to develop questions again, she revisits these questions about the
plants and asks students to think about questions or share observations about milkweed bugs. If a student shares an observation, she asks students to rephrase the observation as a question. The teacher can provide guidance such as, “I wonder if we can ask a question that is similar to _____.” Encourage students to ask their own questions and over time you will see improvement in the quality of the questions.

Additional strategies for asking questions and defining problems.

Ask and/or identify questions that can be answered by an investigation. Generate a list of questions with students after a common experience with a phenomenon. These questions should be written on the board or on sentence strips. Questions should be ones that students could answer using materials and some that they cannot. For example, “What would happen if you shook the bottle really fast?” and “Why is the laundry soap blue?” Have a discussion about what would have to be done to answer those questions. Guide students to sorting the questions into “Ones we could answer” and “ones we can’t answer.” As time permits, allow students to investigate some of the questions.

As students progress through the year, take one of the questions in the “ones we can’t answer” group and model how to rephrase the question. For example, “Why is the laundry soap blue?” could be, “Does all laundry soap have similar properties?” Students can work on rephrasing other questions in the group. Towards the end of the year, record a number of questions and have students sort them. Ask them how they could change part of the question to make it one they can investigate.

Define a simple problem that can be solved through the development of a new or improved object or tool. As students engage with phenomena, they may have shared engineering experiences, and opportunities to identify problems, both in and beyond the classroom. When introducing the design problem, such as building a stable tower with solid materials or preventing soil erosion with other materials, have students turn and restate the problem in their own words with a partner. These problems can be recorded on a piece of chart paper throughout design process. As the year progresses and students begin to develop their own engineering problems to solve, similar strategies to those shared above can be used.

Sentence frames for students to use to ask questions and define problems.

- What does _____?
- Where is _____?

Here are other examples of asking questions and defining problems in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students ask questions about rocks and soil they find in the school yard.
- In the **Solids and Liquids Module**, students ask questions about the properties of solids that allow them to function in a tower.
- In the **Insects and Plants Module**, students ask questions about the growth of brassica plants.
Science and Engineering Practices—Grade 2

- When I _____ why does _____?
- When does _____?
- Why is _____?
- Why does _____?
- I predict _____.
- I wonder _____.
- What would happen if _____?
- What causes _____?
- What is the effect of _____?
- How does _____ affect _____?
- What would change if _____?
- I predict _____ because _____.
- The problem we will solve is _____.

Questions for teachers to ask students about asking questions and defining problems.

- Which of these questions are you wondering about?
- Which of these parts do you want to change?
- Could _____ be the problem you might solve?
- What questions do you have about _____?
- What questions do you have about what you might change?
- What questions could you ask to find out _____?
- What is the problem we are trying to solve?
- How might we solve this problem?
- What do you need to know about _____?
Developing and Using Models

Scientists use models (from here on, for the sake of simplicity, we use the term “models” to refer to conceptual models rather than mental models) to represent their current understanding of a system (or parts of a system) under study, to aid in the development of questions and explanations, and to communicate ideas to others. … Models can be evaluated and refined through an iterative cycle of comparing their predictions with the real world and then adjusting them, thereby potentially yielding insights into the phenomenon being modeled. (A Framework for K–12 Science Education, 2012, page 13.)

As students explore phenomena, systems, and the world around them, they formulate models about phenomena and how and why things work the way they do. These models, either emerging or fully developed, guide questions and explanations about the working of the natural world. Students represent their models and use them to communicate and test their ideas about cause-and-effect relationships.

Working with students developing and using models.

The *Investigations Guide* identifies steps in which students can develop and use models. Initially, students formulate primitive models to explain phenomena and how the world works with naive intuitive thinking. Their models will often be drawings with some thinking attached to them. The teacher can ask questions or provided experiences to guide further development of the model. Depending on the timing, questions might be asked when the teacher is listening to a small group. Questions such as, “How does that work?” and “What would the happen if you added the cup to the top of your tower?” will prompt students to improve their model. During a sense-making discussion, the teacher can have students share their models with others, providing a way to get feedback and think critically about how to make adjustments. As the year progresses, the teacher scaffolds the development of students’ own models with models based on data.

Example in Grade 2

Distinguish between a model and the actual object, process, and/or events the model represents and develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s). In the *Pebbles, Sand, and Silt Module*, Investigation 2, Part 4, students consider how water and wind change landforms. They watch a video where two students use a baking pan, sand, and gravel to model a mountain. Before the students in the video use a cup with holes, students are asked to compare the baking pan model to an actual mountain. The teacher can support students in comparing during a
discussion by asking students questions about the size and shape of the model compared to real mountains and how the cup of rain differs from rain. Images from Science Resources can provide visuals for students as well. Beyond the size, students might mention that some mountains have trees and other vegetation while the model mountain is just sand and gravel. When students are comparing a model to an actual object or process, provide structured opportunities for students to focus on one aspect or step. As they progress, see if students can identify similarities and differences more independently. Using these observations, students make predictions about what might happen when water is poured on the model. When they observe the remainder of the video, students discuss how the model of erosion might differ from erosion in the natural world.

Develop a simple model based on evidence to represent a proposed object or tool. When developing a model of a tool or object, the teacher needs to carefully guide students through the process initially. For example, students are challenged to build a bridge that will support weight in the Solids and Liquids Module. This can begin by guiding a discussion about what they observed in images of bridges. Students identify the long footpath (or road). Show students one of the available materials and ask guiding questions, such as, “Do you think this material might be used as the long footpath?” Continue the discussion by doing think-alouds as you hold up one object at a time. “I wonder what this might be used for.” “Could I use this to hold something up?” Have students turn and talk about how they could use a particular material. Providing this guidance focuses students’ designs. Allow students to visit with others and get ideas to try in their model. As the year progresses, continue to review what observations students have made that aid the design process. Present students with a few of the materials they can use at a time rather than one at a time.

Additional strategies for developing and using models.

Compare models to identify common features and differences. Ideally, young students should work directly with actual objects or processes. For example, in the Solids and Liquids Module, students create towers using a variety of materials. They make comparisons between the actual process, shared on a poster, and the model process. For example, students can compare the first step of their model to the actual creation of plywood. Ask questions such as, “What is the same about the first step you did and the first step in the lumber mill?” Think-alouds also provide insight for students to make comparisons between two models. To further support students when comparing models, ask students to generate words, such as *smaller* or *larger* that can
be used to identify differences. In certain cases, such as the worm jar, the model does not represent all aspects of the natural environment. Students might be able to identify one of the main differences between the two is the natural environment contains animals that eat worms.

Sentence frames for students to use to develop and use models.

- The model shows _____.
- The model doesn’t show _____.
- The parts of my model are _____.
- This model is different because _____.
- My model shows how _____ changes _____.
- I changed my model because _____.

Questions for teachers to ask students about developing and using models.

- How can you make a drawing in your notebook to explain _____?
- What could you add to your model to show _____?
- Does this part mean _____?
- What ideas could you add to your model?
- What changes could you make?

Here are other examples of developing and using models in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students develop and use models to reduce erosion.
- In the **Solids and Liquids Module**, students develop and use models to sort materials by particle size.
- In the **Insects and Plants Module**, students develop models of habitats for schoolyard insects.
Appendix F of NGSS identifies student capabilities as they plan and carry out investigations. Those in bold appear in the performance expectations for grade 2.

- With guidance, plan and conduct an investigation in collaboration with peers (for K).
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
- Evaluate different ways of observing and/or measuring a phenomenon to determine which way can answer a question.
- Make observations (firsthand or from media) and/or measurements to collect data that can be used to make comparisons.
- Make observations (firsthand or from media) and/or measurements of a proposed object or tool or solution to determine if it solves a problem or meets a goal.
- Make predictions based on prior experiences.

Planning and Carrying out Investigations

Scientists and engineers investigate and observe the world with essentially two goals: (1) to systematically describe the world and (2) to develop and test theories and explanations of how the world works. In the first, careful observation and description often lead to identification of features that need to be explained or questions that need to be explored (A Framework for K–12 Science Education, page 59).

Students plan and carry out investigations in pursuit of data to be analyzed. Investigations can be conducted under teacher guidance in order to gain experience with controlling variables, using tools such as balances or thermometers, and making sufficient observations. Students can contribute to a common class or group investigation in which materials and procedures are identified. Predictions can be made based on observations and analysis of cause-and-effect relationships.

Working with students planning and carrying out investigations.

Much like other practices, students in second grade will need guidance in carrying out investigations. These experiences will serve as a starting point for students. When investigating phenomena, a teacher needs to consider the allocation of time, the level at which students can plan and conduct, and what skills students can develop during the lesson. In the Investigations Guide, procedures might be provided for everyone to follow for the first time. Later in the module, students might develop procedures collaboratively with the teacher’s guidance. Teachers will need to adjust their expectations to the skill and experiences of their students. Similarly, instructions on how to use tools accurately will be introduced during an early investigation and the teacher will need to monitor the use of the tool throughout the year.

The data collected while carrying out investigations is often recorded on a provided notebook sheet or students can develop their own recording method with teacher support. Again, the teacher needs to determine the time available and the prior experience of students.

Example in Grade 2

Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.

In the Insects and Plants Module, Investigation 2, Part 2, Step 16, students are asked to plan how to test the effect of water and light on a grown brassica plant. For a guided approach, the teacher can draw three boxes in the class notebook, each with several grown brassica plants. Water, no water, light, and no light are written on word cards. Start with testing the effect of light on the plants. One of the sets of plants needs to have light and another with no light. In order to test the effect
of water, one set of the plants have water and another with no water. Students will need guidance as there needs to be one set of plants that received both water and light while the others will be denied either water or light, but not both. In this example, the teacher structures and guides the setup of the procedure with students.

As students demonstrate the ability to follow procedures and make observations, the teacher shifts the responsibility to the students. Many investigations in FOSS have indicated steps for students to use to produce data. Some of these have prepared notebook sheets with a data collection tool. These can serve as resources for students to reference when developing their own methods. Students can record their observations in the class notebook to serve as models for other students. As the year progresses, guidance is still provided for new procedures and ways to make observations, however, scaffolds are gradually removed as skills increase.

Additional strategies for planning and carrying out investigations.

Evaluate different ways of observing and/or measuring a phenomenon to determine which way can answer a question. Time and effort for students to record data is at a premium in second grade. In order to best evaluate different ways to observe a phenomenon, students need experience in different methods. Guide students in making quality observations by asking questions such as, “Would it be better to look at the milkweed from the side or from the top to see all of the parts? How could we record these different points of view in our notebook?”

Make observations (firsthand or from media) and/or measurements of a proposed object or tool or solution to determine if it solves a problem or meets a goal. When students are presented with an engineering challenge, they need to observe to see if the designed object, tool, or solution meets the challenge. Ask students questions related directly to the challenge throughout the design process, such as “What does the habitat need to have in order to meet the needs of the insect?” and “Which part of the habitat provides food for the insect?” As the year progresses, questions become, “What are you trying to do with this habitat?” and “What did you observe that makes you think you solved your problem?” This allows students to connect their observation to the criteria of the challenge.

Make predictions based on prior experiences. Making predictions in second grade, as well as other grades, needs to be based on prior experience. In many cases, the Investigation Guide provides prompts for students to make predictions at the appropriate time. A good way to help students make predictions is to generate a list of
Science and Engineering Practices—Grade 2

Possible outcomes first by asking, “What could happen when we <change you are making>?” This allows students to consider all the possible outcomes before firming up which one they believe will happen. A general rule, if students cannot think of possible outcomes or make reasonable predictions, they need more experience or have not yet discovered a pattern in the data. In these cases, provide the experience rather than waiting for predictions and revisit it later.

When you do hear students excitedly make predictions in the spur of the moment, seize the opportunity and ask them, “Why do you think that will happen? What have you observed before that makes you think that?” These questions connect predictions to observed patterns.

Sentence frames for students to use to plan and carry out investigations.

• First, we will _____.
• Next, we will _____.
• Then, we will _____.
• If we change _____, then _____.
• I predict _____ because _____.
• I observe _____.
• I want to find out _____.
• We could _____ to see if _____.

Questions for teachers to ask students about planning and carrying out investigations.

• Are you trying to find out _____?
• Have you thought about _____?
• What will you do first? Second?
• Will you need _____?
• Does _____ meet the criteria?
• What are you trying to find out?
• How could you find out _____?
• Is there another way?
• What materials will you need?
• How will you test _____?
• Is there anything else you want to find out?
Analyzing and Interpreting Data

At the elementary level, students need support to recognize the need to record observations—whether in drawings, words, or numbers—and to share them with others. As they engage in scientific inquiry more deeply, they should begin to collect categorical or numerical data for presentation in forms that facilitate interpretation, such as tables and graphs (A Framework for K–12 Science Education, 2012, page 63).

Once data have been collected, they must be organized for interpretation and analysis. Students initially need guidance on how to organize and display numerical data in tables or graphs. Narrative observations also need to be organized in logical ways so students can analyze them. Through teacher guidance, students should strive to discover patterns in their data. In engineering, this analysis can help determine if design changes resulted in the desired effect.

Working with students analyzing and interpreting data

As students carry out investigations, they collect data in various forms. Students need to learn how those data can be organized for analysis. In the Investigations Guide, suggestions are made for data collection tools. Some might require a mini-lesson; others might be accomplished through questioning and discussion. The Science Notebook in Grades K–2 chapter discusses strategies for guiding students’ use of organizing tools, such as tables, graphs, and drawings.

When data are organized, teachers need to help students analyze and interpret data. This can often be done effectively during sense-making discussions. In a sense-making discussion, the teacher poses questions to guide students to uncover patterns and relationships. See the Sense-Making Discussions for Three-Dimensional Learning chapter for more information on how to conduct this type of discussion with students.

Example from Grade 2

Use observations (firsthand or from media) to describe patterns and/or relationships in the natural and designed world(s) in order to answer scientific questions and solve problems. In the Insects and Plants Module, students observe many different organisms. Second graders have had some experience with recording observations but still need guidance on how to make sense of this data and apply it to the natural and designed world. In Investigation 2, Part 2, students make close observations of the brassica plants. Since this is early in the module, the teacher can do a think-aloud as they make their observations. As the students record, questions about the shape of leaves, colors, and size are asked to help students identify patterns or relationships. Later in the module, students observe
Here are other examples of analyzing and interpreting data in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students analyze and interpret data about how rocks change.
- In the **Solids and Liquids Module**, students analyze and interpret data about the properties of solids with small particles compared to properties of liquids.
- In the **Insects and Plants Module**, students analyze and interpret data to compare different insects.

milkweed nymphs in Investigation 3, Part 3. During the observations, students notice the milkweed bug molt. The teacher prompts students to make a connection with their observations of the mealworm molt. This can be done by having students revisit their notebook entry for mealworms in a previous investigation. In Investigation 4, Part 2, students observe the segments of a silkworm. The *Investigations Guide* recommends modeling a technical drawing in the class notebook so details can be examined further. For example, students make specific observations about which segments have prolegs and which have other features. Finally, in Investigation 5, Part 1, students observe the painted lady larvae. Since students had several experiences making detailed drawings and connects between the various insects, they are given more independence in making those connections. Teachers should monitor this and make the necessary adjustments to guide students. This can be done by having students revisit previous notebook entries. The *Investigations Guide* and the Sense-Making for Three-Dimensional Learning chapter contain information about questions to ask and how to scaffold these discussions over the course of the year. Some investigations allow students to focus on the cause-and-effect relationships and others focus on patterns. Strategies for working with these are also shared in the Crosscutting Concepts for Grade 2 chapter.

Other strategies for analyzing and interpreting data.

Analyze data from tests of an object or tool to determine if it works as intended. In the **Pebbles, Sand, and Silt Module**, students observe sand in use as they work with sandpaper. They examine the properties of different types of sandpaper, coarse, medium, and fine. They use the sandpaper on craft sticks and consider the effects of the different textures. During the sense-making discussion, students make comparisons. The teacher can ask questions to guide the discussion such as, “The purpose of sandpaper is to make rough things smooth. Feeling the craft stick and looking at the sawdust on your plate, what does that tell you about this tool? What are the differences when you use different textures of sandpaper?” In general, some second graders will need guidance on comparing the results of using the tool or object to the established criteria.

Record information (observations, thoughts, and ideas) and use and share pictures, drawings, and/or writings of observations. The *Investigations Guide* provides recommendations for when students should record information for further analysis during the sense-making discussion. The Science Notebooks for Grades K–2 chapter shares specific strategies for ways students can record, use and share their observations over the course of the year.
Compare predictions (based on prior experiences) to what occurred (observable events). As indicated in the planning and conducting investigation section, students make predictions about what might happen when a change is made. Be sensitive when asking students to compare their predictions to what occurred. Students might interpret their predictions as wrong or even go as far as trying to erase their original predictions. Focus the attention on why they made the prediction rather than if it is right or wrong. A safe way to do that is to say something like, “I really thought the milkweed bug was going to become a pupa. That made sense to me at that time. Now that I have seen this, I wonder why some insects have different life cycles than others.” In this example, the teacher took ownership of a prediction that was reasonable (and likely similar to many students) and used it as an opportunity to ask a question. A scientist or engineer might say, “Hmmm, that’s strange, I wonder why that happened.”

Sentence frames for students to use to analyze and interpret data.

- I observe _____.
- It looks _____.
- It feels _____.
- It smells _____.
- It sounds like _____.
- I think _____.
- _____ reminds me of _____.
- My picture shows _____.

Questions for teachers to ask students about analyzing and interpreting data.

- Is this a pattern?
- Are these the same or different?
- Do you think it means _____?
- How could you start your drawing _____?
- Does this mean your design works?
- What do you observe?
- What surprised you?
- Does this change what you think about _____?
- What patterns do you observe?
Using Mathematics and Computational Thinking

Mathematics and computational tools are central to science and engineering. Mathematics enables the numerical representation of variables, the symbolic representation of relationships between physical entities, and the prediction of outcomes. Mathematics provides powerful models for describing and predicting ... (A Framework for K–12 Science Education, 2012, page 64).

Strongly connected to planning and carrying out investigation and interpreting and analyzing data, mathematics plays heavily into the work of science and engineering. Measurements and other quantitative data can be collected and organized in various arrays for analysis. These data can be used to support student models, explanations, and design solutions.

Working with students using mathematics and computational thinking.

Students need to understand the difference between qualitative and quantitative data and know when to use them. This requires guidance and discussion. Asking questions, such as, “Is this something we should describe using numbers or words?” are useful for students to consider. Quantitative data (things counted or measured) can be displayed in various ways for analysis. In second grade, students are familiar with numbers, words, and simple graphs. They will still need support in developing these graphs. The work they do in K–2 serves as foundational skills for later grades when the capabilities (see the list in the sidebar) are further developed.

Strategies for using mathematics and computational thinking.

Most collection methods in second grade for both quantitative and qualitative are provided for students. When introducing these, have a quick discussion about why students are using numbers or words. Use a think-aloud, such as, “I am going to count the number of segments on the silkworm larva and compare that to the number of segments on the mealworm.” Also in the Investigations Guide, mini-lessons on how to make graphs are included when relevant.

Sentence frames for students to use for mathematics and computational thinking.

- We counted _____.
- There are more/less _____.
- The ____ is bigger/smaller _____.
- We found out that _____.
- The graph/table shows ______.

Appendix F of NGSS identifies student capabilities as they use mathematics and computational thinking. None of these appear in the performance expectations for grade 2.

- Decide when to use qualitative vs. quantitative data.
- Use counting and numbers to identify and describe patterns in the natural and designed world(s).
- Describe, measure, and/or compare quantitative attributes of different objects and display the data using simple graphs.
- Use quantitative data to compare two alternative solutions to a problem.

Appendix F of NGSS identifies student capabilities as they use mathematics and computational thinking. None of these appear in the performance expectations for grade 2.
Questions for teachers to ask students about using mathematics and computational thinking.

- How many?
- How much?
- How long?
- How could you find out how many?
- How could you find out how long?

Here are examples of using mathematics and computational thinking in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students use mathematics and computational thinking to graph the sizes of rocks in their mixture.
- In the **Solids and Liquids Module**, students use mathematics and computational thinking to consider how the same amount of water appears in various containers of different shapes.
- In the **Insects and Plants Module**, students use mathematics and computational thinking to identify the quantities of various insect structures.
Constructing Explanations and Designing Solutions

Engaging students with standard scientific explanations of the world—helping them to gain an understanding of the major ideas that science has developed—is a central aspect of science education. Asking students to demonstrate their own understanding of the implications of a scientific idea by developing their own explanations of phenomena, whether based on observations they have made or models they have developed, engages them in an essential part of the process by which conceptual change can occur. Explanations in science are a natural for such pedagogical uses, given their inherent appeals to simplicity, analogy, and empirical data (which may even be in the form of a thought experiment). And explanations are especially valuable for the classroom because of, rather than in spite of, the fact that there often are competing explanations offered for the same phenomenon—for example, the recent gradual rise in the mean surface temperature on Earth (A Framework for K–12 Science Education, 2012, page 68).

When students have analyzed data, they extract meaning and transfer that meaning to explain other observable phenomena and answer questions. These explanations, (in engineering—solutions), are based on data and/or models. Many questions are related to phenomena such as, “What is the effect of light on grown brassica plants?” When explaining the phenomenon of a cause-and-effect relationship, students should use observations. Claims, evidence, and reasoning is developed in upper elementary and middle school where there are opportunities for students to reason sufficiently during a sense-making discussion. Students utilize their scientific understanding to develop solutions to problems. Once solutions are developed, students carefully analyze data to determine whether the proposed solutions do or do not meet the established criteria and honor the constraints.

Working with students constructing explanations and designing solutions.

As students analyze and interpret data during sense-making discussions, they construct thoughts about phenomena, respond to questions, and design and evaluate solutions to problems. Teachers should guide students to communicate explanations with others, use sentences frames, and allow time for revision. During discussions, teachers should listen for explanations and use clarifying questions based on student responses. At the beginning, teachers might have students develop a claim as a class and model how to use data as evidence to support their claim. As the year progresses, students develop their claims and select data to use as evidence independently. When appropriate, the teacher can push for model-based reasoning, or the “why <student claim> is happening.” When expressing their reasoning, teachers should encourage students...
to use relevant academic vocabulary and take ample time for this to be developed in discourse with peers.

In the *Investigations Guide*, specific focus questions guide each part. These questions call for students to construct an answer to the questions at the end of the part. While the focus questions pertain to one part, a guiding question is broader. Students construct explanations for the guiding questions for the investigation as well. These broader explanations connect to the Disciplinary Core Ideas and the natural or designed world.

Example in Grade 2

Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. In the *Solids and Liquids Module*, Investigation 3, Part 5, students make comparisons of solids with different sizes of particles. They observe the solids as they roll them in bottles. In making these observations, students determine various ways the solids are different. In the beginning of the year, students need a high level of scaffolding as they construct explanations. Students can discuss questions, “How are the solids different?” and “In what ways did the solid and water act different?” as a class. The class can answer the focus question together in the class notebook. As students progress through the year in both their writing ability and their skill in constructing explanations, the class notebook can be used to model a portion of constructing an explanation. In Investigation 4, Part 4, students examine what happens when they freeze bottles of liquids. The teacher asks students to look for patterns in the effect of cold on the liquids. The teacher might use the sentence frame, “One way the properties of material change when they are cooled is ______.” Students can answer the question orally in the discussion and when they use their own science notebook, they can access the words such as freeze on the word wall.

Other strategies for constructing explanations and designing solutions.

Use tools and/or materials to design and/or build a device that solves a specific problem or a solution to a specific problem and generate and/or compare multiple solutions to a problem. As students understand scientific ideas, they have the opportunities to transfer and apply those ideas to the designed world. As students begin to work on a particular problem, some might see the relationship between a design and the science experiences. Other students will need guidance through questioning such as those in the *Investigations Guide* to make those connections. Allow some time for students to struggle with
Here are other examples of constructing explanations and designing solutions in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students construct explanations of how soils differ.
- In the **Solids and Liquids Module**, students design a bridge to meet a particular challenge.
- In the **Insects and Plants Module**, students construct explanations based on their observations of insects that visit the schoolyard.

the problem. If the struggle becomes unproductive, call students to the discussion area and have a short review of the relevant science notebook entries they have made leading up to the day’s work. During the sense-making discussion, students can bring their design solutions and meet with another group. During this meeting, groups can share their solution, how it fits with the criteria and constraints. Depending upon classroom culture, comparisons can be made among groups, however, be sure to keep the focus on discussing the designs, not creating a competition.

Sentence frames for students to use to construct explanations and design solutions.

- I observed _____.
- I think _____ because _____ .
- We could solve the problem by _____.
- The best way to solve the problem is _____.

Questions for teachers to ask students about constructing explanations and designing solutions.

- Are you saying _____?
- Does _____ mean that _____?
- Is _____ an example of _____?
- Do you think _____ is a result of _____?
- Which _____ caused _____?
- Does _____ relate to this new situation?
- Is _____ the same or different from _____?
Engaging in Argument from Evidence

Argument in science goes beyond reaching agreements in explanations and design solutions. Whether investigating a phenomenon, testing a design, or constructing a model to provide a mechanism for an explanation, students are expected to use argumentation to listen to, compare, and evaluate competing ideas and methods based on their merits (NGSS Appendices, 2013, page 62).

Argumentation involves the interplay of different explanations (claims and evidence). Good arguments to support claims are based on evidence derived from data, as well as sound reasoning. Ideally, these data come from students’ firsthand experiences, with additional information from peer and teacher input and relevant media. Sometimes students question the relevance or validity of evidence as part of the argumentation process, requiring clarification or refinement of data collection or analysis. Other times, students elucidate and successfully defend the reasoning used in an explanation.

Working with students engaging in argument from evidence.

In the process of constructing explanations and sharing designs, students may disagree with other students in the group. Conversations ensue. Students refine explanations when they debate the merits of alternate ideas in informal arguments or when you structure a more formal argument within the class. Allowing students to revisit, revise, and elaborate previous explanations is a desirable progression after scientific argumentation.

Teachers should carefully consider when and how to encourage argumentation to support the learning of science content, especially in second grade. Opportunities to engage students in argumentation, along with suggested strategies below, are indicated in the Investigations Guide at specific points in the investigations. Unplanned opportunities or “teachable moments” occasionally present themselves during lessons. Teachers should be ready to encourage students to engage in argumentation to elaborate ideas that emerge spontaneously during discussion.

Example in Grade 2

Construct an argument with evidence to support a claim. In FOSS, students provide written explanations when answering the focus question. These explanations can be refined through argumentation. Students also present verbal statements during arguments. In both instances, students should construct their arguments by putting forth a claim and supporting evidence.
In the *Pebbles, Sand, and Silt Module*, Investigation 1, Part 3, students observe the properties of river rocks. They are given a claim, “river rocks aren’t the same at all.” In the beginning of the year, students should present verbal statements either for or against this claim during a sense-making discussion. Students might initially respond with one word. Prompt students by asking, “What did you observe that makes you think that?” This asks for evidence. These arguments can be recorded in the class notebook and others can agree or disagree.

Another strategy is to support students when they begin to engage in argument. Their arguments will need development. Model how to write a position and then identify and color-code portions of the arguments. Gather students on the rug, and write an argument statement on the board. Ask students which part of the statement is the claim. When all agree, underline the claim with one color, then underline the evidence statements with another color. As students develop their writing skills, they can begin to use this strategy with their own writing.

At the end of the investigation, write a few claim statements and a few evidence statements on sentence strips. Put the strips on a pocket chart to match up as a class, or give each small group a set to work on together. Students should first determine which statement strips are claims and which constitute evidence. Next, they should match the evidence statements with the claims they support.

Additional strategies for engaging in argument from evidence.

Identify arguments that are supported by evidence. In order to identify arguments that are supported by evidence, young students need experiences with the concepts they are discussing. Students who can understand the argument will be better able to determine whether it is supported by evidence.

Present two arguments on the board, one stating just a claim, the other containing evidence to support a claim. Clarify with students the two statements, such as these from the *FOSS Insects and Plants Module*.

<table>
<thead>
<tr>
<th>Argument Statement</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica plants need water to grow because Michael forgot to water his plant and it died.</td>
<td>Brassica plants need light to grow.</td>
</tr>
</tbody>
</table>

Have students discuss which position tells why the statement may be true. Ask students to think of evidence that plants need light to grow. When students have generated some ideas, return to the two statements on the board and add evidence to support the positions.
Provide additional positions with and without evidence for students to critique. Have them sort statements into those that are supported and those that are not.

<table>
<thead>
<tr>
<th>Supported by evidence</th>
<th>Not supported by evidence</th>
</tr>
</thead>
</table>

Distinguish between explanations that account for all gathered evidence and those that do not. When helping students distinguish between explanations that account for multiple pieces of evidence, consider where students are in their development of the concepts and whether they are aware of all gathered evidence.

During a whole-class discussion, collect data that students have recorded that might help them answer a focus question. Write these data on the board or on chart paper. On another area of the board or another piece of chart paper, record a few explanations that students put forth and/or provide a few of your own. Make sure one example contains robust evidence, one contains sparse evidence, and one is not supported by any data gathered in the investigation. Ask,

- *Which explanations contain evidence?*
- *Which explanations do not contain evidence?*
- *Which explanation includes the most evidence?*

To improve the explanations, read through the potential evidence and ask students if the evidence supports the explanations. Model how to include those pieces of evidence in the explanations.

Analyze why some evidence is relevant to a scientific question and some is not. After posing a question, ask students to think-pair-share what they will need to answer the question. For example, when you ask students if a milkweed bug is an insect, students would identify characteristics of insects as evidence. Write these on chart paper. The day after students have answered the question in their notebooks, review the initial list of ideas. Prompt students to think about a piece of evidence such as the small size of the milkweed bug. Ask if this piece of evidence is helpful, or relevant, in identifying the milkweed bug as an insect. Provide other pieces of evidence for students to assess. Revise the list to indicate the observations that they agree are evidence that supports their answers and those observations that are not.

Distinguish between opinions and evidence in one’s own explanation. Make sure students understand the difference between opinion and scientific evidence. Opinions are based on what a person believes to be true or feels should be true. Evidence is based on observation and scientific data.
Science and Engineering Practices—Grade 2

Give students a few prompts to generate descriptions that might include an opinion, such as “How would you describe this rock?” Generate a list of responses on the board, such as “I think it is pretty,” and “The rock has stripes.” Have students discuss in small groups, which statements are opinions and which are observations. Underline opinions in red, evidence in blue. As an extension, have students take turns making a statement, which the rest of the group determines to be an opinion or evidence.

Listen actively to arguments to indicate agreement or disagreement based on evidence, and/or to retell the main points of the argument. Engaging in argumentation requires students to formulate their own positions, and to focus their attention on other students’ positions. Primary students need a lot of practice to develop these high-level discourse skills. Model and discuss what it looks like and sounds like when people listen to each other, show they understand, ask for clarification, and agree and disagree about ideas. As much as possible, give students the opportunity to discuss their ideas in pairs, small groups, and as a class. Make it a goal to move away from generating the questions yourself to more student-centered discussions, where students are sharing and building on each other’s ideas. Use strategies such as having students ask each other questions and paraphrase what others are saying.

Post icons and/or use hand signals for the different types of discussion moves (agree, disagree, build on, question, etc.) to help students adopt the moves in their own conversations.

Debrief the process. Ask students how they think the discussion went. What made them think harder or share more during the discussion? How could it be better next time?

Another strategy is to use a discussion protocol, such as A/B partners, for students who have differing ideas. Assign partners so that each student has a different position. Have student A share his or her thinking while student B listens. Student B responds by paraphrasing what A said and then asking a question that helps the other think more deeply about the claim, such as “Why do you think that? What is your evidence?” They could also ask specific questions.

➤ Why do you think we should put those seeds here?
➤ Why do you think cornstarch is a solid?
➤ How does your drawing show where the molt comes from?

Students then switch roles. When both partners have shared their positions, students should either reach a common position or agree to disagree and report back to the class.
Make a claim about the effectiveness of an object, tool, or solution that is supported by relevant evidence. During and after engaging in designing and constructing activities, have students pause to think about what they are basing their decisions on and what evidence supports those decisions. For example, when constructing the highest tower possible, in the FOSS Solids and Liquids Module, ask students about the materials they choose for the base. Encourage students to cite evidence from what they have learned during the investigation; for example aluminum foil is flexible, so it can be used to hold things together.

Another strategy is to have a design showcase. Exhibit student-designed objects. Students take turns explaining how they designed and built their object, why they think it is effective for the design purpose, and the evidence that supports their claim. Other students can ask questions and provide feedback on effectiveness.

Sentence frames for students to use to engage in argument from evidence.

- I claim _____.
- My evidence is _____.
- I agree/disagree with _____ because _____.
- What about _____?
- I used to think _____ but now I think _____.
- My models show _____.
- My data show _____.

Questions for teachers to ask students about engaging in argument from evidence.

- Do you agree or disagree?
- Which explanation makes more sense to you?
- Which piece of evidence supports this claim?
- Is this an opinion or evidence?
- Do you agree or disagree?

Here are examples of engaging in argument from evidence in FOSS grade 2 modules.

- In the Pebbles, Sand, and Silt Module, students engage in argument from evidence on how soils are different.
- In the Solids and Liquids Module, students engage in argument from evidence if toothpaste is a solid or a liquid.
- In the Insects and Plants Module, students engage in argument from evidence about the designed habitats for schoolyard insects.
Appendix F of NGSS identifies student capabilities as they obtain, evaluate, and communicate information. The one in bold appears in the performance expectations for grade 2.

- Read grade-appropriate texts and/or use media to obtain scientific and/or technical information to determine patterns in and/or evidence about the natural and designed world(s).
- Describe how specific images (e.g., a diagram showing how a machine works) support a scientific or engineering idea.
- Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question and/or supporting a scientific claim.
- Communicate information or design ideas and/or solutions with others in oral and/or written forms using models, drawings, writing, or numbers that provide detail about scientific ideas, practices, and/or design ideas.

Obtaining, Evaluating, and Communicating Information

Being literate in science and engineering requires the ability to read and understand their literatures. Science and engineering are ways of knowing that are represented and communicated by words, diagrams, charts, graphs, images, symbols, and mathematics. Reading, interpreting, and producing text are fundamental practices of science in particular, and they constitute at least half of engineers’ and scientists’ total working time (A Framework for K–12 Science Education, 2012, page 74).

Students’ first-hand experiences combined with the science and engineering practices are extended by engaging with texts and other sources of information. Skill is required to extract and connect information found in the readings, videos, and other media. Like other sources of information, these too need to be organized, analyzed, and resolved into explanations and arguments. As students communicate their scientific thinking and technical information, they need skills in order to do so effectively whether orally, written, or visually.

Working with students obtaining, evaluating, and communicating information.

Obtaining, evaluating, and communicating information in science requires part science practice and part language arts skills. The teacher needs to consider student abilities with reading, writing, speaking, listening, and vocabulary when engaging students with this practice. Scaffolds and modifications may be necessary for students to extract useful information from text and from other media and analyze it with data collected from first-hand experiences. The *Investigations Guide* provides suggestions for specific instructional strategies for the FOSS readings and media. The Science-Centered Language Development chapter also provides a wealth of strategies for communicating information through speaking and writing. The teacher needs to select the appropriate strategies for their students, monitor progress, and adjust accordingly over the year.

Example in Grade 2

Read grade-appropriate texts and/or use media to obtain scientific and/or technical information to determine patterns in and/or evidence about the natural and designed world(s). In the *Solids and Liquids Module*, Investigation 2, Part 3, students have observed liquids in bottles and discussed their properties. In this example, the teacher wants to develop student capability of comprehending grade-appropriate complex text. After students have...
shared their initial finding, they are asked to read an article in the FOSS Science Resources book. The teacher provides specific questions about trees for students to consider as they read. As students read or listen to the text, they determine answers to their questions. Students discuss their responses. The teacher probes for students to cite specific evidence from the article or their observations.

Strategies for obtaining, evaluating, and communicating information.

Describe how specific images (e.g., a diagram showing how a machine works) support a scientific or engineering idea and obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question and/or supporting a scientific claim. As indicated previously, strategies for obtaining information from text are shared in many places. When working with diagrams and various text features, conduct a mini-lesson to explain what information the author is communicating or have students work with a partner to analyze the information. With the information from both text and visuals, students can ask questions, refine models, incorporate new information into their explanations, or engage in argument.

Communicate information or design ideas and/or solutions with others in oral and/or written forms using models, drawings, writing, or numbers that provide detail about scientific ideas, practices, and/or design ideas. See the Science-Centered Language Development chapter for strategies on how to build students’ ability to communicate information or design ideas.

Here are other examples of obtaining, evaluating, and communicating information in FOSS grade 2 modules.

- In the **Pebbles, Sand, and Silt Module**, students obtain, evaluate, and communicate information about the properties of rocks.
- In the **Solids and Liquids Module**, students obtain, evaluate, and communicate information about melting and freezing.
- In the **Insects and Plants Module**, students obtain, evaluate, and communicate information from books and media and integrating that with their first-hand experiences to construct explanations about living organisms.
SCIENCE AND ENGINEERING PRACTICES OPPORTUNITIES IN FOSS

This is a complete listing of every instance where a science and engineering practice is called out in the sidebar of the FOSS *Investigations Guide*. The ones in bold are the grade-level examples described in this chapter.

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
</table>
| Ask questions based on observations to find more information about the natural world. | Inv 1, Part 3, Step 8: Wash rocks outdoors
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 2, Step 10: Discuss the procedure |
| Define a simple problem that can be solved through the development of a new or improved object or tool. | Inv 3, Part 2, Step 15: Share notebook entries
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 2, Step 10: Discuss the procedure |
| Distinguish between a model and the actual object, process, and/or events the model represents. | Inv 2, Part 2, Step 4: Make a permanent record
Inv 2, Part 4, Step 26: Discuss video demonstration
Inv 2, Part 4, Step 34: Assess progress: notebook entry
Inv 4, Part 4, Step 5: Read “Ways to Represent Land and Water” |
| Develop and/or use a model to represent amounts, relationships, relative scales, and/or patterns in the natural world. | Inv 2, Part 2, Step 4: Make a permanent record
Inv 2, Part 4, Step 20: Distribute Rocks in Bottle Drawing
Inv 2, Part 4, Step 26: Discuss video demonstration
Inv 2, Part 4, Step 34: Assess progress: notebook entry
Inv 4, Part 4, Step 5: Read “Ways to Represent Land and Water” |
| Develop or use a simple model based on evidence to present a proposed object or tool. | Inv 2, Part 2, Step 4: Make a permanent record
Inv 2, Part 4, Step 20: Distribute Rocks in Bottle Drawing
Inv 2, Part 4, Step 26: Discuss video demonstration
Inv 2, Part 4, Step 34: Assess progress: notebook entry |
| Compare models to identify common features and differences. | Inv 2, Part 2, Step 4: Make a permanent record
Inv 2, Part 4, Step 20: Distribute Rocks in Bottle Drawing
Inv 2, Part 4, Step 26: Discuss video demonstration
Inv 2, Part 4, Step 34: Assess progress: notebook entry |

© 2019 Copyright The Regents of the University of California Berkeley

Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com

SEP_Grade_2_4C.indd 32

3/20/18 1:09 PM
<table>
<thead>
<tr>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv 2, Part 1, Step 3: Focus question: How are liquids different from each other?</td>
<td>Inv 1, Part 2, Step 5: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 2, Part 4, Step 10: Discuss the results</td>
<td>Inv 1, Part 2, Step 8: Record changes</td>
</tr>
<tr>
<td>Inv 4, Part 1, Step 8: Add water to make mixtures</td>
<td>Inv 2, Part 2, Step 2: Discuss plant growth</td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 11: Observe the bottles after settling</td>
<td>Inv 2, Part 2, Step 6: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 1: Focus question: Is toothpaste solid or liquid?</td>
<td>Inv 3, Part 1, Step 10: Share notebook entries</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 4, Step 10: Make a scientific drawing</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 4, Step 13: Introduce the design challenge</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 11: Answer the focus question</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 4: Monitor the activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 6: Facilitate center work</td>
<td>Inv 2, Part 4, Step 21: View the video</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 10: Discuss level</td>
<td>Inv 3, Part 4, Step 13: Introduce the design challenge</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 14: Introduce Falling-Bottle Puzzle</td>
<td>Inv 3, Part 4, Step 18: Share the habitat models</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 11: Answer the focus question</td>
<td>Inv 5, Part 4, Step 8: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 4: Monitor the activity</td>
<td>Inv 5, Part 4, Step 15: Have a sense-making discussion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 4, Step 15: Review towers</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 4, Step 21: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Practices</td>
<td>Pebbles, Sand, and Silt Module</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
</tbody>
</table>
| Make observations (firsthand) to collect data that can be used to make comparisons. | Inv 1, Part 1, Step 7: Collect the tiny rock pieces and rocks
Inv 1, Part 2, Step 5: Start washing rocks
Inv 1, Part 3, Step 9: Monitor sorting
Inv 1, Part 3, Step 10: Assess progress: performance assessment
Inv 2, Part 1, Step 13: Assess progress: performance assessment
Inv 2, Part 2, Steps 8-9: Read and discuss “The Story of Sand”
Inv 2, Part 2, Step 3: Introduce plate shaking
Inv 2, Part 4, Step 6: Demonstrate procedure
Inv 3, Part 1, Step 3: Describe the outdoor field trip
Inv 3, Part 2, Step 6: Focus question: What does sand do for sandpaper?
Inv 3, Part 2, Step 6: Focus question: What does sand do for sandpaper?
Inv 3, Part 3, Step 8: Assess progress: performance assessment
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 1, Step 14: Plan soil and water investigation
Inv 4, Part 2, Step 12: Review observations |
Solids and Liquids Module

- Inv 1, Part 1, Step 4: Introduce the solid-object investigation
- Inv 1, Part 2, Step 7: Identify new materials
- Inv 1, Part 3, Step 4: Demonstrate the grouping circle
- Inv 1, Part 3, Step 7: Assess progress: performance assessment
- Inv 1, Part 4, Step 5: Review the challenge
- Inv 1, Part 4, Step 20: Let the bridge building begin
- Inv 1, Part 5, Step 5: Go outdoors
- Inv 2, Part 1, Step 3: Focus question: How are liquids different from each other?
- Inv 2, Part 1, Step 7: Assess progress: performance assessment
- Inv 2, Part 3, Step 6: Facilitate center work
- Inv 2, Part 4, Step 5: Observe puddle water
- Inv 2, Part 4, Step 7: Make your own puddle
- Inv 3, Part 1, Step 5: Describe work at the center
- Inv 3, Part 2, Step 7: Have a sense-making discussion
- Inv 3, Part 2, Step 8: Assess progress: performance assessment
- Inv 3, Part 3, Step 4: Describe an activity for the rest of the class
- Inv 3, Part 5, Step 5: Collect solids in bottles
- Inv 4, Part 1, Step 8: Add water to make mixtures
- Inv 4, Part 1, Step 12: Discuss change
- Inv 4, Part 2, Step 4: Describe adding water and recording
- Inv 4, Part 3, Step 1: Focus question: Is toothpaste solid or liquid?
- Inv 4, Part 3, Step 11: Assess progress: performance assessment
- Inv 4, Part 4, Step 4: Distribute cups of solids
- Inv 4, Part 4, Step 8: Have a sense-making discussion
- Inv 4, Part 5, Step 5: Monitor the tea preparation

Insects and Plants Module

- Inv 1, Part 1, Step 18: Guide mealworm recording
- Inv 1, Part 2, Step 5: Assess progress: performance assessment
- Inv 1, Part 3, Step 4: Culture the young mealworms
- Inv 2, Part 1, Step 10: Focus question: How did we plant the brassica seeds?
- Inv 2, Part 2, Step 2: Discuss plant growth
- Inv 2, Part 2, Step 17: Assess progress: performance assessment
- Inv 2, Part 3, Step 2: Identify fruit
- Inv 2, Part 4, Step 14: Share findings
- Inv 3, Part 1, Step 3: Discuss observations
- Inv 3, Part 2, Step 4: Focus question: What do milkweed bugs need in their habitat?
- Inv 3, Part 3, Step 3: Introduce proboscis
- Inv 3, Part 4, Step 7: Demonstrate how to safely search for insects
- Inv 3, Part 4, Step 8: Search for insects
- Inv 4, Part 1, Step 12: Add silkworms to the habitat
- Inv 4, Part 2, Step 7: Observe growing larvae
- Inv 4, Part 4, Step 7: Demonstrate how to sample plants
- Inv 5, Part 4, Step 8: Assess progress: performance assessment
Science and Engineering Practices—Grade 2

Practices

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
</table>
| Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. | Inv 2, Part 2, Step 3: Introduce plate shaking
Inv 2, Part 4, Step 6: Demonstrate procedure
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 1, Step 14: Plan soil and water investigation
Inv 4, Part 1, Step 5: Label the soil samples
Inv 4, Part 2, Step 12: Review observations |
| Make predictions based on prior experiences. | Inv 2, Part 4, Step 6: Demonstrate procedure
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 1, Step 14: Plan soil and water investigation
Inv 4, Part 1, Step 5: Label the soil samples
Inv 4, Part 2, Step 12: Review observations |
<table>
<thead>
<tr>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
</table>
| Inv 2, Part 1, Step 3: Focus question: How are liquids different from each other?
Inv 2, Part 1, Step7: Assess progress: performance assessment
Inv 2, Part 3, Step 6: Facilitate center work
Inv 2, Part 4, Step 5: Observe puddle water
Inv 2, Part 4, Step 7: Make your own puddle
Inv 3, Part 1, Step 5: Describe work at the center
Inv 3, Part 2, Step 7: Have a sense-making discussion
Inv 3, Part 2, Step 8: Assess progress: performance assessment
Inv 3, Part 3, Step 4: Describe an activity for the rest of the class
Inv 3, Part 5, Step 5: Collect solids in bottles
Inv 4, Part 1, Step 8: Add water to make mixtures
Inv 4, Part 1, Step 12: Discuss change
Inv 4, Part 2, Step 4: Describe adding water and recording
Inv 4, Part 3, Step 1: Focus question: Is toothpaste solid or liquid?
Inv 4, Part 3, Step 11: Assess progress: performance assessment
Inv 4, Part 4, Step 4: Distribute cups of solids
Inv 4, Part 4, Step 8: Have a sense-making discussion
Inv 4, Part 5, Step 5: Monitor the tea preparation |
| Inv 3, Part 1, Step 3: Discuss observations
Inv 3, Part 1, Step 2: Focus question: What do milkweed bugs need in their habitat?
Inv 3, Part 3, Step 3: Introduce proboscis
Inv 3, Part 4, Step 7: Demonstrate how to safely search for insects
Inv 3, Part 4, Step 8: Search for insects
Inv 4, Part 1, Step 12: Add silkworms to the habitat
Inv 4, Part 2, Step 7: Observe growing larvae
Inv 4, Part 4, Step 7: Demonstrate how to sample plants |
| Inv 2, Part 1, Step 10: Focus question: How did we plant the brassica seeds?
Inv 2, Part 2, Step 2: Discuss plant growth
Inv 2, Part 2, Step 17: Assess progress: performance assessment
Inv 2, Part 3, Step 2: Identify fruit
Inv 2, Part 4, Step 14: Share findings
Inv 4, Part 1, Step 12: Add silkworms to the habitat
Inv 4, Part 2, Step 7: Observe growing larvae
Inv 4, Part 4, Step 7: Demonstrate how to sample plants |
Science and Engineering Practices—Grade 2

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysing and interpreting data</td>
<td></td>
</tr>
<tr>
<td>Record information (observations, thoughts, and ideas).</td>
<td>Inv 1, Part 1, Step 9: Introduce weathering and sand</td>
</tr>
<tr>
<td></td>
<td>Inv 1, Part 2, Step 7: Discuss results</td>
</tr>
<tr>
<td></td>
<td>Inv 1, Part 2, Step 11: Answer the focus question</td>
</tr>
<tr>
<td></td>
<td>Inv 1, Part 4, Step 12: Assess progress: notebook entry</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 2, Step 4: Make a permanent record</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 3, Step 14: Have a sense-making discussion</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 4, Step 16: Discuss drawings</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 1, Step 6: Share observations</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 2, Step 10: Have a sense-making discussion</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 3, Step 8: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 3, Step 12: Share and sculptures</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 1, Step 9: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 2, Step 12: Review observations</td>
</tr>
</tbody>
</table>

<p>| Use and share pictures, drawings, and/or writings of observations. | Inv 1, Part 2, Step 11: Answer the focus question |
| | Inv 1, Part 4, Step 12: Assess progress: notebook entry |
| | Inv 2, Part 2, Step 4: Make a permanent record |
| | Inv 2, Part 4, Step 16: Discuss drawings |
| | Inv 3, Part 1, Step 6: Share observations |
| | Inv 3, Part 2, Step 10: Have a sense-making discussion |
| | Inv 3, Part 3, Step 8: Assess progress: performance assessment |
| | Inv 3, Part 3, Step 12: Share and sculptures |
| | Inv 4, Part 1, Step 9: Assess progress: performance assessment |
| | Inv 4, Part 2, Step 12: Review observations |</p>
<table>
<thead>
<tr>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv 1, Part 5, Step 14: Have a sense-making discussion</td>
<td>Inv 1, Part 1, Step 6: Discuss structure and function</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 6: Facilitate center work</td>
<td>Inv 1, Part 2, Step 8: Record changes</td>
</tr>
<tr>
<td>Inv 2, Part 4, Step 6: Share results</td>
<td>Inv 1, Part 2, Step 16: Draw beetle body parts and structures</td>
</tr>
<tr>
<td>Inv 3, Part 1, Step 12: Have a sense-making discussion</td>
<td>Inv 1, Part 3, Step 7: Discuss death and disfigurement</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 7: Have a sense-making discussion</td>
<td>Inv 1, Part 3, Step 9: Answer the focus question</td>
</tr>
<tr>
<td>Inv 3, Part 3, Step 12: Start a chart</td>
<td>Inv 2, Part 2, Step 4: Model recording in notebooks</td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 4: Monitor the activity</td>
<td>Inv 2, Part 2, Step 6: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 3, Part 5, Step 10: Record results in notebooks</td>
<td>Inv 2, Part 3, Step 7: Assess progress: notebook entry</td>
</tr>
<tr>
<td>Inv 4, Part 1, Step 14: Organize the changes</td>
<td>Inv 2, Part 4, Step 16: Make a scientific drawing</td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 7: Record observations</td>
<td>Inv 4, Part 2, Step 8: Observe segments</td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 11: Observe the bottles after settling</td>
<td>Inv 4, Part 2, Step 16: Have a sense-making discussion</td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 5: Make a notebook entry</td>
<td>Inv 4, Part 3, Step 6: Focus question: What is the life cycle of the silkworm?</td>
</tr>
<tr>
<td>Inv 4, Part 4, Step 8: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 4, Step 10: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 5, Step 5: Monitor the tea preparation</td>
<td></td>
</tr>
</tbody>
</table>

Inv 1, Part 5, Step 14: Have a sense-making discussion
Inv 2, Part 3, Step 6: Facilitate center work
Inv 2, Part 4, Step 6: Share results
Inv 3, Part 1, Step 12: Have a sense-making discussion
Inv 3, Part 2, Step 7: Have a sense-making discussion
Inv 3, Part 3, Step 12: Start a chart
Inv 3, Part 4, Step 4: Monitor the activity
Inv 3, Part 5, Step 10: Record results in notebooks
Inv 4, Part 1, Step 14: Organize the changes
Inv 4, Part 2, Step 7: Record observations
Inv 4, Part 2, Step 11: Observe the bottles after settling
Inv 4, Part 3, Step 5: Make a notebook entry
Inv 4, Part 4, Step 8: Have a sense-making discussion
Inv 4, Part 4, Step 10: Have a sense-making discussion
Inv 4, Part 5, Step 5: Monitor the tea preparation

Inv 1, Part 1, Step 6: Discuss structure and function
Inv 1, Part 2, Step 8: Record changes
Inv 1, Part 2, Step 16: Draw beetle body parts and structures
Inv 1, Part 3, Step 7: Discuss death and disfigurement
Inv 1, Part 3, Step 9: Answer the focus question
Inv 2, Part 2, Step 4: Model recording in notebooks
Inv 2, Part 2, Step 6: Assess progress: performance assessment
Inv 2, Part 3, Step 7: Assess progress: notebook entry
Inv 2, Part 4, Step 16: Make a scientific drawing
Inv 3, Part 3, Step 2: Discuss molting
Inv 3, Part 3, Step 11: Assess progress: notebook entry
Inv 3, Part 4, Step 10: Make a scientific drawing
Inv 4, Part 2, Step 8: Observe segments
Inv 4, Part 2, Step 16: Have a sense-making discussion
Inv 4, Part 3, Step 6: Focus question: What is the life cycle of the silkworm?
Inv 5, Part 2, Step 6: Assess progress: notebook entry
Inv 5, Part 3, Step 11: Assess progress: notebook entry
Science and Engineering Practices—Grade 2

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
</table>
| Use observations (firsthand or from media) to describe patterns and/or relationships in the natural world in order to answer scientific questions. | Inv 1, Part 1, Step 9: Introduce weathering and sand
Inv 1, Part 2, Step 7: Discuss results
Inv 1, Part 2, Step 11: Answer the focus question
Inv 1, Part 4, Step 12: Assess progress: notebook entry
Inv 2, Part 3, Step 14: Have a sense-making discussion
Inv 2, Part 4, Step 16: Discuss drawings
Inv 4, Part 1, Step 9: Assess progress: performance assessment
Inv 4, Part 2, Step 12: Review observations |
<table>
<thead>
<tr>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv 2, Part 3, Step 6: Facilitate center work</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 4, Step 6: Share results</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 1, Step 12: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 7: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 3, Step 12: Start a chart</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 4: Monitor the activity</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 5, Step 10: Record results in notebooks</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 1, Step 14: Organize the changes</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 7: Record observations</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 11: Observe the bottles after settling</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 5: Make a notebook entry</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 4, Step 8: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 4, Step 10: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 5, Step 5: Monitor the tea preparation</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 1, Step 6: Discuss structure and function</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 2, Step 8: Record changes</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 2, Step 16: Draw beetle body parts and structures</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 3, Step 7: Discuss death and disfigurement</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 3, Step 9: Answer the focus question</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 2, Step 4: Model recording in notebooks</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 2, Step 6: Assess progress: performance assessment</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 7: Assess progress: notebook entry</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 4, Step 16: Make a scientific drawing</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 2: Discuss molting</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 3, Step 11: Assess progress: notebook entry</td>
<td></td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 10: Make a scientific drawing</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 8: Observe segments</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 16: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 6: Focus question: What is the life cycle of the silkworm?</td>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 5, Step 14: Have a sense-making discussion</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 6: Facilitate center work</td>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 4, Step 6: Share results</td>
<td></td>
</tr>
</tbody>
</table>

Inv 2, Part 3, Step 6: Facilitate center work
Inv 2, Part 4, Step 6: Share results
Inv 4, Part 1, Step 14: Organize the changes
Inv 4, Part 2, Step 7: Record observations
Inv 4, Part 2, Step 11: Observe the bottles after settling
Inv 4, Part 3, Step 5: Make a notebook entry
Inv 4, Part 4, Step 8: Have a sense-making discussion
Inv 4, Part 4, Step 10: Have a sense-making discussion
Inv 4, Part 5, Step 5: Monitor the tea preparation
Inv 3, Part 3, Step 2: Discuss molting
Inv 3, Part 3, Step 11: Assess progress: notebook entry
Inv 3, Part 4, Step 10: Make a scientific drawing
Inv 5, Part 2, Step 6: Assess progress: notebook entry
Inv 5, Part 3, Step 11: Assess progress: notebook entry

Science and Engineering Practices—Grade 2
Science and Engineering Practices—Grade 2

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe, measure, and/or compare quantitative attributes of different</td>
<td>Inv 2, Part 1, Step 20: Create a graph</td>
</tr>
<tr>
<td>objects and display the data using simple graphs.</td>
<td></td>
</tr>
<tr>
<td>Use counting and numbers to identify and describe patterns in the</td>
<td></td>
</tr>
<tr>
<td>natural and designed world(s).</td>
<td></td>
</tr>
<tr>
<td>Make observations (firsthand or from media) to construct an evidence-</td>
<td>Inv 1, Part 1, Step 9: Introduce weathering and sand</td>
</tr>
<tr>
<td>based account for natural phenomena.</td>
<td>Inv 1, Part 2, Step 14: View the video: All about Volcanoes</td>
</tr>
<tr>
<td></td>
<td>Inv 1, Part 3, Step 10: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 1, Step 13: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 2, Steps 8-9: Read and discuss “The Story of Sand”</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 2, Step 10: Assess progress: notebook entry</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 4, Step 20: Distribute Rocks in Bottle Drawing</td>
</tr>
<tr>
<td></td>
<td>Inv 2, Part 4, Step 34: Assess progress: notebook entry</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 3, Step 8: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 4, Step 9: Answer the focus question</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 5, Step 4: Introduce the clay soil</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 5, Steps 12-13: Read and discuss “What Are Natural Resources?”</td>
</tr>
<tr>
<td></td>
<td>Inv 3, Part 5, Step 14: Revisit the guiding question</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 1, Step 22: Have a sense-making discussion</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 2, Step 21: Assess progress: notebook entry</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 1, Step 22: Have a sense-making discussion</td>
</tr>
<tr>
<td></td>
<td>Inv 4, Part 4, Step 1: Read “Erosion”</td>
</tr>
</tbody>
</table>

© 2019 Copyright The Regents of the University of California Berkeley
Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com, Printing 1
<table>
<thead>
<tr>
<th>Science and Engineering Practices Opportunities in FOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids and Liquids Module</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 6: Facilitate center work</td>
</tr>
<tr>
<td>Inv 2, Part 2, Step 9: Introduce liquid-properties activities</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 10: Discuss level</td>
</tr>
<tr>
<td>Inv 2, Part 3, Step 14: Introduce Falling-Bottle Puzzle</td>
</tr>
<tr>
<td>Inv 3, Part 1, Step 13: Introduce particle</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 8: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 3, Part 3, Step 13: Review the focus question</td>
</tr>
<tr>
<td>Inv 3, Part 4, Step 5: Focus question: What is a general rule for using screens to separate a mixture of small objects?</td>
</tr>
<tr>
<td>Inv 3, Part 5, Step 7: Compare solids and liquids</td>
</tr>
<tr>
<td>Inv 3, Part 5, Steps 11-12: Read and discuss “Comparing Solids and Liquids”</td>
</tr>
<tr>
<td>Inv 4, Part 2, Steps 15-16: Read and discuss “Mix It Up!”</td>
</tr>
<tr>
<td>Inv 4, Part 2, Step 17: Share notebook entries</td>
</tr>
<tr>
<td>Inv 4, Part 4, Step 15: Have a sense-making discussion</td>
</tr>
<tr>
<td>Practices</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Generate and/or compare solutions to a problem.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Use tools and/or materials to design and/or build a device that solves a specific problem or a solution to a specific problem.</td>
</tr>
<tr>
<td>Construct an argument with evidence to support a claim.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Listen actively to arguments to indicate agreement or disagreement based on evidence.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Read grade-appropriate text and/or use media to obtain scientific and/or technical information to determine patterns in and/or evidence about the natural and designed world(s).</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solids and Liquids Module</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Inv 1, Part 3, Step 7: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 1, Part 4, Step 8: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inv 2, Part 2, Step 7: Engage in argumentation</td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 9: Chart students’ arguments</td>
</tr>
<tr>
<td>Inv 4, Part 3, Step 11: Assess progress: performance assessment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inv 1, Part 1, Steps 17-18: Read and discuss “Everything Matters”</td>
</tr>
<tr>
<td>Inv 2, Part 1, Step 7: Assess progress: performance assessment</td>
</tr>
<tr>
<td>Inv 2, Part 3, Steps 17-18: Read and discuss “Liquids”</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 13: Share notebook entries</td>
</tr>
<tr>
<td>Inv 3, Part 4, Steps 8-9: Read and discuss “Pouring”</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Science and Engineering Practices—Grade 2

<table>
<thead>
<tr>
<th>Practices</th>
<th>Pebbles, Sand, and Silt Module</th>
</tr>
</thead>
</table>
| Obtain information using various texts, text features, and other media that will be useful in answering a scientific question. | Inv 1, Part 2, Step 14: View the video: All about Volcanoes
Inv 1, Part 4, Steps 15-16: Read and discuss "Exploring Rocks"
Inv 1, Part 5, Steps 5-6: Read and discuss "Colorful Rocks"
Inv 2, Part 2, Steps 8-9: Read and discuss "The Story of Sand"
Inv 2, Part 4, Steps 21-22: Read and discuss "Rocks Move"
Inv 3, Part 1, Steps 11-13: Read and discuss "Making Things with Rocks"
Inv 3, Part 5, Steps 12-13: Read and discuss "What Are Natural Resources?"
Inv 4, Part 2, Steps 7-8: Read and discuss "What Is in Soil?"
Inv 4, Part 2, Steps 24-25: Read and discuss "Testing Soil"
Inv 4, Part 3, Step 5: Read the article again
Inv 4, Part 3, Steps 7-8: Read and discuss "States of Water"
Inv 4, Part 4, Step 1: Read "Erosion"
Inv 4, Part 4, Step 5: Read "Ways to Represent Land and Water" |
| Communicate information or design ideas and/or solutions with others in oral and/or written forms using models, drawings, writing, or numbers that provide detail about scientific ideas, practices, and/or design ideas. | Inv 3, Part 1, Steps 11-13: Read and discuss "Making Things with Rocks"
Inv 3, Part 5, Steps 12-13: Read and discuss "What Are Natural Resources?"
Inv 4, Part 2, Steps 7-8: Read and discuss "What Is in Soil?"
Inv 4, Part 2, Steps 24-25: Read and discuss "Testing Soil"
Inv 4, Part 3, Step 5: Read the article again
Inv 4, Part 3, Steps 7-8: Read and discuss "States of Water"
Inv 4, Part 4, Step 1: Read "Erosion"
Inv 4, Part 4, Step 5: Read "Ways to Represent Land and Water" |
<table>
<thead>
<tr>
<th>Science and Engineering Practices Opportunities in FOSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Solids and Liquids Module</th>
<th>Insects and Plants Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv 1, Part 1, Steps 17-18: Read and discuss “Everything Matters”</td>
<td>Inv 1, Part 1, Steps 19-22: Read and discuss “Animals and Plants in Their Habitats”</td>
</tr>
<tr>
<td>Inv 1, Part 1, Step 7: Assess progress: performance assessment</td>
<td>Inv 1, Part 2, Step 20: Reintroduce the graphic organizer</td>
</tr>
<tr>
<td>Inv 2, Part 2, Steps 17-18: Read and discuss “Liquids”</td>
<td>Inv 2, Part 2, Step 12: Have a sense-making discussion</td>
</tr>
<tr>
<td>Inv 3, Part 2, Step 13: Share notebook entries</td>
<td>Inv 2, Part 2, Step 20: Discuss pollination</td>
</tr>
<tr>
<td>Inv 3, Part 4, Steps 8-9: Read and discuss “Pouring”</td>
<td>Inv 2, Part 3, Step 7: Assess progress: notebook entry</td>
</tr>
<tr>
<td>Inv 4, Part 4, Steps 20-23: Read and discuss “Heating and Cooling” and “Is Change Reversible?”</td>
<td>Inv 2, Part 4, Step 16: Make a scientific drawing</td>
</tr>
<tr>
<td>Inv 1, Part 1, Steps 17-18: Read and discuss “Everything Matters”</td>
<td>Inv 2, Part 4, Steps 18-19: Read and discuss “How Seeds Travel”</td>
</tr>
<tr>
<td>Inv 2, Part 3, Steps 17-18: Read and discuss “Liquids”</td>
<td>Inv 3, Part 4, Step 13: Introduce the design challenge</td>
</tr>
<tr>
<td>Inv 3, Part 4, Steps 11: Assess progress: performance assessment</td>
<td>Inv 3, Part 4, Step 18: Share the habitat models</td>
</tr>
</tbody>
</table>

© 2019 Copyright The Regents of the University of California Berkeley

Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com, Printing 1